Source code for floris.wind_data

from __future__ import annotations

import copy
import inspect
from abc import abstractmethod
from pathlib import Path
from typing import List

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pandas.api.types import CategoricalDtype
from scipy.interpolate import (
    LinearNDInterpolator,
    NearestNDInterpolator,
    RegularGridInterpolator,
)

from floris.heterogeneous_map import HeterogeneousMap
from floris.type_dec import NDArrayFloat
from floris.utilities import (
    check_and_identify_step_size,
    make_wind_directions_adjacent,
    wrap_180,
)


[docs] class WindDataBase: """ Super class that WindRose and TimeSeries inherit from, enforcing the implementation of unpack() on the child classes and providing the general functions unpack_for_reinitialize() and unpack_freq(). """
[docs] @abstractmethod def unpack(self): """ Placeholder for child classes of WindDataBase, which each need to implement the unpack() method. """ raise NotImplementedError("unpack() not implemented on {0}".format(self.__class__.__name__))
[docs] def unpack_for_reinitialize(self): """ Return only the variables need for FlorisModel.reinitialize """ ( wind_directions_unpack, wind_speeds_unpack, ti_table_unpack, _, _, heterogeneous_inflow_config, ) = self.unpack() return ( wind_directions_unpack, wind_speeds_unpack, ti_table_unpack, heterogeneous_inflow_config, )
[docs] def unpack_freq(self): """Unpack frequency weighting""" return self.unpack()[3]
[docs] def unpack_value(self): """Unpack values of power generated""" return self.unpack()[4]
[docs] def check_heterogeneous_inflow_config(self, heterogeneous_inflow_config): """ Check that the heterogeneous_inflow_config dictionary is properly formatted Args: heterogeneous_inflow_config (dict): A dictionary containing the following keys: * 'speed_multipliers': A 2D NumPy array (size n_findex x num_points) of speed multipliers. * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). """ if heterogeneous_inflow_config is not None: if not isinstance(heterogeneous_inflow_config, dict): raise TypeError("heterogeneous_inflow_config_by_wd must be a dictionary") if "speed_multipliers" not in heterogeneous_inflow_config: raise ValueError( "heterogeneous_inflow_config must contain a key 'speed_multipliers'" ) if "x" not in heterogeneous_inflow_config: raise ValueError("heterogeneous_inflow_config must contain a key 'x'") if "y" not in heterogeneous_inflow_config: raise ValueError("heterogeneous_inflow_config must contain a key 'y'")
[docs] def set_layout(self, layout_x=None, layout_y=None): """ Default implementation the explicitly does nothing. Only WindData objects that depend on layout need to implement this method. Included so that FlorisModel can call this method on the WindData object when the layout is updated. Args: layout_x (list, optional): List of x-coordinates of the turbines. Defaults to None. layout_y (list, optional): List of y-coordinates of the turbines. Defaults to None. """ # No operation performed return None
[docs] class WindRose(WindDataBase): """ The WindRose class is used to drive FLORIS and optimization operations in which the inflow is characterized by the frequency of binned wind speed and wind direction values. Turbulence intensities are defined as a function of wind direction and wind speed. Args: wind_directions: NumPy array of wind directions (NDArrayFloat). Must be evenly spaced and monotonically increasing. wind_speeds: NumPy array of wind speeds (NDArrayFloat). Must be evenly spaced and monotonically increasing. ti_table: Turbulence intensity table for binned wind direction, wind speed values (float, NDArrayFloat). Can be an array with dimensions (n_wind_directions, n_wind_speeds) or a single float value. If a single float value is provided, the turbulence intensity is assumed to be constant across all wind directions and wind speeds. freq_table: Frequency table for binned wind direction, wind speed values (NDArrayFloat, optional). Must have dimension (n_wind_directions, n_wind_speeds). Defaults to None in which case uniform frequency of all bins is assumed. value_table: Value table for binned wind direction, wind speed values (NDArrayFloat, optional). Must have dimension (n_wind_directions, n_wind_speeds). Defaults to None in which case uniform values are assumed. Value can be used to weight power in each bin to compute the total value of the energy produced compute_zero_freq_occurrence: Flag indicating whether to compute zero frequency occurrences (bool, optional). Defaults to False. heterogeneous_map (HeterogeneousMap, optional): A HeterogeneousMap object to define background heterogeneous inflow condition as a function of wind direction and wind speed. Alternatively, a dictionary can be passed in to define a HeterogeneousMap object. Defaults to None. heterogeneous_inflow_config_by_wd (dict, optional): A dictionary containing the following which can be used to define a heterogeneous_map object (note this parameter is kept for backwards compatibility and is not recommended for use): * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). * 'speed_multipliers': A 2D NumPy array (size num_wd (or num_ws) x num_points) of speed multipliers. If neither wind_directions nor wind_speeds are defined, then this should be a single row array * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). Optional. * 'wind_speeds': A 1D NumPy array (size num_ws) of wind speeds (m/s). Optional. Defaults to None. """ def __init__( self, wind_directions: NDArrayFloat, wind_speeds: NDArrayFloat, ti_table: float | NDArrayFloat, freq_table: NDArrayFloat | None = None, value_table: NDArrayFloat | None = None, compute_zero_freq_occurrence: bool = False, heterogeneous_map: HeterogeneousMap | dict | None = None, heterogeneous_inflow_config_by_wd: dict | None = None, ): if not isinstance(wind_directions, np.ndarray): raise TypeError("wind_directions must be a NumPy array") if not isinstance(wind_speeds, np.ndarray): raise TypeError("wind_speeds must be a NumPy array") # Confirm that both wind_directions and wind_speeds are monitonically # increasing and evenly spaced if len(wind_directions) > 1: # Check monotonically increasing if not np.all(np.diff(wind_directions) > 0): raise ValueError("wind_directions must be monotonically increasing") # Check evenly spaced (Function will raise error if not) check_and_identify_step_size(wind_directions=wind_directions) if len(wind_speeds) > 1: # Check monotonically increasing if not np.all(np.diff(wind_speeds) > 0): raise ValueError("wind_speeds must be monotonically increasing") # Check evenly spaced if not np.allclose(np.diff(wind_speeds), wind_speeds[1] - wind_speeds[0]): raise ValueError("wind_speeds must be evenly spaced") # Save the wind speeds and directions self.wind_directions = wind_directions self.wind_speeds = wind_speeds # Check ti_table is a float or a NumPy array if not isinstance(ti_table, (float, np.ndarray)): raise TypeError("ti_table must be a float or a NumPy array") # Check if ti_table is a single float value if isinstance(ti_table, float): self.ti_table = np.full((len(wind_directions), len(wind_speeds)), ti_table) # Otherwise confirm the dimensions and then save it else: if not ti_table.shape[0] == len(wind_directions): raise ValueError("ti_table first dimension must equal len(wind_directions)") if not ti_table.shape[1] == len(wind_speeds): raise ValueError("ti_table second dimension must equal len(wind_speeds)") self.ti_table = ti_table # If freq_table is not None, confirm it has correct dimension, # otherwise initialize to uniform probability if freq_table is not None: if not freq_table.shape[0] == len(wind_directions): raise ValueError("freq_table first dimension must equal len(wind_directions)") if not freq_table.shape[1] == len(wind_speeds): raise ValueError("freq_table second dimension must equal len(wind_speeds)") self.freq_table = freq_table else: self.freq_table = np.ones((len(wind_directions), len(wind_speeds))) # Normalize freq table self.freq_table = self.freq_table / np.sum(self.freq_table) # If value_table is not None, confirm it has correct dimension, # otherwise initialize to all ones if value_table is not None: if not value_table.shape[0] == len(wind_directions): raise ValueError("value_table first dimension must equal len(wind_directions)") if not value_table.shape[1] == len(wind_speeds): raise ValueError("value_table second dimension must equal len(wind_speeds)") self.value_table = value_table # Save whether zero occurrence cases should be computed # First check if the ti_table contains any nan values (which would occur for example # if generated by the TimeSeries to WindRose conversion for wind speeds and directions # that were not present in the original time series) In this case, raise an error if compute_zero_freq_occurrence: if np.isnan(self.ti_table).any(): raise ValueError( "ti_table contains nan values. (This is likely the result of " " unsed wind speeds and directions in the original time series.)" " Cannot compute zero frequency occurrences." ) self.compute_zero_freq_occurrence = compute_zero_freq_occurrence # Check that heterogeneous_map and heterogeneous_inflow_config_by_wd are not both defined if heterogeneous_map is not None and heterogeneous_inflow_config_by_wd is not None: raise ValueError( "Only one of heterogeneous_map and heterogeneous_inflow_config_by_wd can be" + " defined." ) # If heterogeneous_inflow_config_by_wd is not None, then create a HeterogeneousMap object # using the dictionary if heterogeneous_inflow_config_by_wd is not None: # TODO: In future, add deprecation warning for this parameter here self.heterogeneous_map = HeterogeneousMap(**heterogeneous_inflow_config_by_wd) # Else if heterogeneous_map is not None elif heterogeneous_map is not None: # If heterogeneous_map is a dictionary, then create a HeterogeneousMap object if isinstance(heterogeneous_map, dict): self.heterogeneous_map = HeterogeneousMap(**heterogeneous_map) # Else if heterogeneous_map is a HeterogeneousMap object, then save it elif isinstance(heterogeneous_map, HeterogeneousMap): self.heterogeneous_map = heterogeneous_map # Else raise an error else: raise ValueError( "heterogeneous_map must be a HeterogeneousMap object or a dictionary." ) # Else if neither heterogeneous_map nor heterogeneous_inflow_config_by_wd are defined, # then set heterogeneous_map to None else: self.heterogeneous_map = None # Build the gridded and flatten versions self._build_gridded_and_flattened_version() def _build_gridded_and_flattened_version(self): """ Given the wind direction and speed array, build the gridded versions covering all combinations, and then flatten versions which put all combinations into 1D array """ # Gridded wind speed and direction self.wd_grid, self.ws_grid = np.meshgrid( self.wind_directions, self.wind_speeds, indexing="ij" ) # Flat wind speed and direction self.wd_flat = self.wd_grid.flatten() self.ws_flat = self.ws_grid.flatten() # Flat frequency table self.freq_table_flat = self.freq_table.flatten() # Flat TI table self.ti_table_flat = self.ti_table.flatten() # value table if self.value_table is not None: self.value_table_flat = self.value_table.flatten() else: self.value_table_flat = None # Set mask to non-zero frequency cases depending on compute_zero_freq_occurrence if self.compute_zero_freq_occurrence: # If computing zero freq occurrences, then this is all True self.non_zero_freq_mask = [True for i in range(len(self.freq_table_flat))] else: self.non_zero_freq_mask = self.freq_table_flat > 0.0 # N_findex should only be the calculated cases self.n_findex = np.sum(self.non_zero_freq_mask)
[docs] def unpack(self): """ Unpack the flattened versions of the matrices and return the values accounting for the non_zero_freq_mask """ # The unpacked versions start as the flat version of each wind_directions_unpack = self.wd_flat.copy() wind_speeds_unpack = self.ws_flat.copy() freq_table_unpack = self.freq_table_flat.copy() ti_table_unpack = self.ti_table_flat.copy() # Now mask thes values according to self.non_zero_freq_mask wind_directions_unpack = wind_directions_unpack[self.non_zero_freq_mask] wind_speeds_unpack = wind_speeds_unpack[self.non_zero_freq_mask] freq_table_unpack = freq_table_unpack[self.non_zero_freq_mask] ti_table_unpack = ti_table_unpack[self.non_zero_freq_mask] # Now get unpacked value table if self.value_table_flat is not None: value_table_unpack = self.value_table_flat[self.non_zero_freq_mask].copy() else: value_table_unpack = None # If heterogeneous_map is not None, then get the heterogeneous_inflow_config if self.heterogeneous_map is not None: heterogeneous_inflow_config = self.heterogeneous_map.get_heterogeneous_inflow_config( wind_directions=wind_directions_unpack, wind_speeds=wind_speeds_unpack ) else: heterogeneous_inflow_config = None return ( wind_directions_unpack, wind_speeds_unpack, ti_table_unpack, freq_table_unpack, value_table_unpack, heterogeneous_inflow_config, )
[docs] def aggregate(self, wd_step=None, ws_step=None, inplace=False): """ Wrapper for downsample method for backwards compatibility """ return self.downsample(wd_step, ws_step, inplace)
[docs] def downsample(self, wd_step=None, ws_step=None, inplace=False): """ Aggregates the wind rose into fewer wind direction and wind speed bins. It is necessary the wd_step and ws_step passed in are at least as large as the current wind direction and wind speed steps. If they are not, the function will raise an error. The function will return a new WindRose object with the aggregated wind direction and wind speed bins. If inplace is set to True, the current WindRose object will be updated with the aggregated bins. Args: wd_step: Step size for wind direction resampling (float, optional). If None, the current step size will be used. Defaults to None. ws_step: Step size for wind speed resampling (float, optional). If None, the current step size will be used. Defaults to None. inplace: Flag indicating whether to update the current WindRose object when True or return a new WindRose object when False (bool, optional). Defaults to False. Returns: WindRose: Aggregated wind rose based on the provided or default step sizes. Only returned if inplace = False. Notes: - Returns a aggregated version of the wind rose using new `ws_step` and `wd_step`. - Uses the bin weights feature in TimeSeries to aggregated the wind rose. - If `ws_step` or `wd_step` is not specified, it uses the current values. """ # If ws_step is passed in, confirm is it at least as large as the current step if ws_step is not None: if len(self.wind_speeds) >= 2: current_ws_step = self.wind_speeds[1] - self.wind_speeds[0] if ws_step < current_ws_step: raise ValueError( "ws_step provided must be at least as large as the current ws_step " f"({current_ws_step} m/s)" ) # If wd_step is passed in, confirm is it at least as large as the current step if wd_step is not None: if len(self.wind_directions) >= 2: current_wd_step = check_and_identify_step_size(wind_directions=self.wind_directions) if wd_step < current_wd_step: raise ValueError( "wd_step provided must be at least as large as the current wd_step " f"({current_wd_step} degrees)" ) # If either ws_step or wd_step is None, set it to the current step if ws_step is None: if len(self.wind_speeds) >= 2: ws_step = self.wind_speeds[1] - self.wind_speeds[0] else: # wind rose will have only a single wind speed, and we assume a ws_step of 1 ws_step = 1.0 if wd_step is None: if len(self.wind_directions) >= 2: wd_step = check_and_identify_step_size(wind_directions=self.wind_directions) else: # wind rose will have only a single wind direction, and we assume a wd_step of 1 wd_step = 1.0 # Pass the flat versions of each quantity to build a TimeSeries model time_series = TimeSeries( self.wd_flat, self.ws_flat, self.ti_table_flat, self.value_table_flat, self.heterogeneous_map, ) # Now build a new wind rose using the new steps aggregated_wind_rose = time_series.to_WindRose( wd_step=wd_step, ws_step=ws_step, bin_weights=self.freq_table_flat ) if inplace: self.__init__( aggregated_wind_rose.wind_directions, aggregated_wind_rose.wind_speeds, aggregated_wind_rose.ti_table, aggregated_wind_rose.freq_table, aggregated_wind_rose.value_table, aggregated_wind_rose.compute_zero_freq_occurrence, aggregated_wind_rose.heterogeneous_map, ) else: return aggregated_wind_rose
[docs] def resample_by_interpolation(self, wd_step=None, ws_step=None, method="linear", inplace=False): """ Wrapper to upsample method for backwards compatibility """ return self.upsample(wd_step, ws_step, method, inplace)
[docs] def upsample(self, wd_step=None, ws_step=None, method="linear", inplace=False): """ Resample the wind rose using interpolation for upsampling. The method can be either 'linear' or 'nearest'. If inplace is set to True, the current WindRose object will be updated with the resampled bins. Args: wd_step: Step size for wind direction resampling (float, optional). If None, the current step size will be used. Defaults to None. ws_step: Step size for wind speed resampling (float, optional). If None, the current step size will be used. Defaults to None. method: Interpolation method to use (str, optional). Can be either 'linear' or 'nearest'. Defaults to "linear". inplace: Flag indicating whether to update the current WindRose object when True or return a new WindRose object when False (bool, optional). Defaults to False. Returns: WindRose: Resampled wind rose based on the provided or default step sizes. Only returned if inplace = False. """ if method == "linear": interpolator = LinearNDInterpolator elif method == "nearest": interpolator = NearestNDInterpolator else: raise ValueError( f"Unknown interpolation method: '{method}'. " "Available methods are 'linear' and 'nearest'" ) # First establish the current ws_step and wd_step if len(self.wind_speeds) >= 2: ws_step_current = self.wind_speeds[1] - self.wind_speeds[0] else: # wind rose will have only a single wind speed, and we assume a ws_step of 1 ws_step_current = 1.0 if len(self.wind_directions) >= 2: # Identify the current step size wd_step_current = check_and_identify_step_size(wind_directions=self.wind_directions) else: # wind rose will have only a single wind direction, and we assume a wd_step of 1 wd_step_current = 1.0 # If either ws_step or wd_step is None, set it to the current step if ws_step is None: ws_step = ws_step_current if wd_step is None: wd_step = wd_step_current # Make sure upsampling is appropriate if wd_step > wd_step_current: raise ValueError( f"Provided wd_step ({wd_step}) is larger than the current " f" wind direction step size. ({wd_step_current} degrees)" " Use the downsample method." ) if ws_step > ws_step_current: raise ValueError( f"Provided ws_step ({ws_step}) is larger than " f"the current wind speed step size. ({ws_step_current} m/s)" " Use the downsample method." ) # Get the current wind directions in adjacent from (ie 0, 2 358 -> -2, 0 ,2) if len(self.wind_directions) >= 2: current_wind_directions, adjacent_sort_index = make_wind_directions_adjacent( self.wind_directions ) else: current_wind_directions = self.wind_directions adjacent_sort_index = np.arange(len(current_wind_directions)) # Identify the covered range of wind directions wd_range_min_current = np.min(current_wind_directions) - wd_step_current / 2.0 wd_range_max_current = np.max(current_wind_directions) + wd_step_current / 2.0 # Look for unlikely case where for example wind directions are 8, 28, ... 358 if wd_range_max_current > 360: # TODO: Handle this case without an error raise ValueError( "Cannot upsample wind rose for case when wind directions are defined" " such that 0 degrees is included by bins to the left of 0 degrees. " ) # Identify the new minimum wind direction wd_min_new = wd_range_min_current + wd_step / 2.0 wd_max_new = wd_range_max_current - wd_step / 2.0 new_wind_directions = np.arange(wd_min_new, wd_max_new + wd_step / 2.0, wd_step) # Set up the new wind speeds ws_range_min_current = np.min(self.wind_speeds) - ws_step_current / 2.0 ws_range_max_current = np.max(self.wind_speeds) + ws_step_current / 2.0 ws_min_new = ws_range_min_current + ws_step / 2.0 ws_max_new = ws_range_max_current - ws_step / 2.0 # Force the new ws_min to 0 if negative if ws_min_new < 0: ws_min_new = 0.0 new_wind_speeds = np.arange(ws_min_new, ws_max_new + ws_step / 2.0, ws_step) # Set up for interpolation by copying the current values # and making sure they are sorted according to the adjacent wind directions wind_direction_column = current_wind_directions.copy() wind_speed_column = self.wind_speeds.copy() ti_matrix = self.ti_table.copy()[adjacent_sort_index, :] freq_matrix = self.freq_table.copy()[adjacent_sort_index, :] if self.value_table is not None: value_matrix = self.value_table.copy()[adjacent_sort_index, :] else: value_matrix = None # For padding wind directions, there are two cases to consider. In the first, # say that the wind directions are 30, 40, 50. In this case it's important append # 30 and 50 to 35 and 55 to ensure the interpolation covers the full range of data # This is the case when wind directions doesn't cover the full range of possible # degrees (0-360) if np.abs((wd_range_min_current % 360.0) - (wd_range_max_current % 360.0)) > 1e-6: wind_direction_column = np.concatenate(( np.array([wd_range_min_current]), wind_direction_column, np.array([wd_range_max_current]) )) ti_matrix = ti_matrix = np.vstack((ti_matrix[0, :], ti_matrix, ti_matrix[-1,:])) freq_matrix = np.vstack((freq_matrix[0, :], freq_matrix, freq_matrix[-1,:])) if self.value_table is not None: value_matrix = np.vstack((value_matrix[0, :], value_matrix, value_matrix[-1,:])) # In the alternative case, where the wind directions cover the full range # ie, 0, 10, 20 30, ...350, then need to place 0 at 360 and 350 at -10 # to cover all interpolations else: # Pad wind direction column with min_wd + 360 wind_direction_column = np.concatenate( ( [np.max(self.wind_directions) - 360.0], wind_direction_column, [np.min(self.wind_directions) + 360.0], ) ) # Pad the remaining with the appropriate value ti_matrix = ti_matrix = np.vstack((ti_matrix[-1, :], ti_matrix, ti_matrix[0, :])) freq_matrix = np.vstack((freq_matrix[-1, :], freq_matrix, freq_matrix[0, :])) if self.value_table is not None: value_matrix = np.vstack((value_matrix[-1, :], value_matrix, value_matrix[0, :])) # Pad out the wind speeds wind_speed_column = np.concatenate( ( np.array([ws_range_min_current]), wind_speed_column, np.array([ws_range_max_current]) ) ) ti_matrix = np.hstack( (ti_matrix[:, 0].reshape((-1, 1)), ti_matrix, ti_matrix[:, -1].reshape((-1, 1))) ) freq_matrix = np.hstack( (freq_matrix[:, 0].reshape((-1, 1)), freq_matrix, freq_matrix[:, -1].reshape((-1, 1))) ) if self.value_table is not None: value_matrix = np.hstack( ( value_matrix[:, 0].reshape((-1, 1)), value_matrix, value_matrix[:, -1].reshape((-1, 1)) ) ) # Grid wind directions and wind speeds to match the ti_matrix and freq_matrix when flattened wd_grid, ws_grid = np.meshgrid(wind_direction_column, wind_speed_column, indexing="ij") # Form wd_grid and ws_grid to a 2-column matrix wd_ws_mat = np.array([wd_grid.flatten(), ws_grid.flatten()]).T # Build the interpolator from wd_grid, ws_grid, to ti_matrix, freq_matrix and value_matrix ti_interpolator = interpolator(wd_ws_mat, ti_matrix.flatten()) freq_interpolator = interpolator(wd_ws_mat, freq_matrix.flatten()) if self.value_table is not None: value_interpolator = interpolator(wd_ws_mat, value_matrix.flatten()) # Grid the new wind directions and wind speeds new_wd_grid, new_ws_grid = np.meshgrid(new_wind_directions, new_wind_speeds, indexing="ij") new_wd_ws_mat = np.array([new_wd_grid.flatten(), new_ws_grid.flatten()]).T # Create the new ti_matrix and freq_matrix new_ti_matrix = ti_interpolator(new_wd_ws_mat).reshape( (len(new_wind_directions), len(new_wind_speeds)) ) new_freq_matrix = freq_interpolator(new_wd_ws_mat).reshape( (len(new_wind_directions), len(new_wind_speeds)) ) if self.value_table is not None: new_value_matrix = value_interpolator(new_wd_ws_mat).reshape( (len(new_wind_directions), len(new_wind_speeds)) ) else: new_value_matrix = None # Wrap new_wind_directions to 0-360 new_wind_directions = new_wind_directions % 360 # Finally sort new_wind_directions, and re-order new_ti_matrix, new_freq_matrix # and new_value_matrix accordingly sort_indices = np.argsort(new_wind_directions) new_wind_directions = new_wind_directions[sort_indices] new_ti_matrix = new_ti_matrix[sort_indices, :] new_freq_matrix = new_freq_matrix[sort_indices, :] if self.value_table is not None: new_value_matrix = new_value_matrix[sort_indices, :] # Create the resampled wind rose resampled_wind_rose = WindRose( new_wind_directions, new_wind_speeds, new_ti_matrix, new_freq_matrix, new_value_matrix, self.compute_zero_freq_occurrence, self.heterogeneous_map, ) if inplace: self.__init__( resampled_wind_rose.wind_directions, resampled_wind_rose.wind_speeds, resampled_wind_rose.ti_table, resampled_wind_rose.freq_table, resampled_wind_rose.value_table, resampled_wind_rose.compute_zero_freq_occurrence, resampled_wind_rose.heterogeneous_map, ) else: return resampled_wind_rose
[docs] def plot( self, ax=None, color_map="viridis_r", wd_step=None, ws_step=None, legend_kwargs={"label": "Wind speed [m/s]"}, ): """ This method creates a wind rose plot showing the frequency of occurrence of the specified wind direction and wind speed bins. If no axis is provided, a new one is created. **Note**: Based on code provided by Patrick Murphy from the University of Colorado Boulder. Args: ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes on which the wind rose is plotted. Defaults to None. color_map (str, optional): Colormap to use. Defaults to 'viridis_r'. wd_step: Step size for wind direction (float, optional). If None, the current step size will be used. Defaults to None. ws_step: Step size for wind speed (float, optional). the current step size will be used. Defaults to None. legend_kwargs (dict, optional): Keyword arguments to be passed to ax.legend(). Defaults to {"label": "Wind speed [m/s]"}. Returns: :py:class:`matplotlib.pyplot.axes`: A figure axes object containing the plotted wind rose. """ # Get a aggregated (downsampled) wind_rose wind_rose_aggregate = self.downsample(wd_step, ws_step, inplace=False) wd_bins = wind_rose_aggregate.wind_directions ws_bins = wind_rose_aggregate.wind_speeds freq_table = wind_rose_aggregate.freq_table # Set up figure if ax is None: _, ax = plt.subplots(subplot_kw={"polar": True}) # Get the wd_step if wd_step is None: if len(wd_bins) >= 2: wd_step = wd_bins[1] - wd_bins[0] else: # This admittedly an odd edge case wd_step = 360.0 # Get a color array color_array = plt.get_cmap(color_map, len(ws_bins)) norm_ws = mpl.colors.Normalize(vmin=np.min(ws_bins), vmax=np.max(ws_bins)) sm_ws = mpl.cm.ScalarMappable(norm=norm_ws, cmap=color_array) for wd_idx, wd in enumerate(wd_bins): rects = [] freq_table_sub = freq_table[wd_idx, :].flatten() for ws_idx, ws in reversed(list(enumerate(ws_bins))): plot_val = freq_table_sub[: ws_idx + 1].sum() rects.append( ax.bar( np.radians(wd), plot_val, width=0.9 * np.radians(wd_step), color=color_array(ws_idx), edgecolor="k", ) ) # Configure the plot ax.figure.colorbar(sm_ws, ax=ax, **legend_kwargs) ax.figure.tight_layout() ax.set_theta_direction(-1) ax.set_theta_offset(np.pi / 2.0) ax.set_theta_zero_location("N") ax.set_xticks(np.arange(0, 2 * np.pi, np.pi / 4)) ax.set_xticklabels(["N", "NE", "E", "SE", "S", "SW", "W", "NW"]) return ax
[docs] def assign_ti_using_wd_ws_function(self, func): """ Use the passed in function to assign new values to turbulence_intensities Args: func (function): Function which accepts wind_directions as its first argument and wind_speeds as second argument and returns turbulence_intensities """ self.ti_table = func(self.wd_grid, self.ws_grid) self._build_gridded_and_flattened_version()
[docs] def assign_ti_using_IEC_method(self, Iref=0.07, offset=3.8): """ Define TI as a function of wind speed by specifying an Iref and offset value as in the normal turbulence model in the IEC 61400-1 standard Args: Iref (float): Reference turbulence level, defined as the expected value of TI at 15 m/s. Default = 0.07. Note this value is lower than the values of Iref for turbulence classes A, B, and C in the IEC standard (0.16, 0.14, and 0.12, respectively), but produces TI values more in line with those typically used in FLORIS. When the default Iref and offset are used, the TI at 8 m/s is 8.6%. offset (float): Offset value to equation. Default = 3.8, as defined in the IEC standard to give the expected value of TI for each wind speed. """ if (Iref < 0) or (Iref > 1): raise ValueError("Iref must be >= 0 and <=1") def iref_func(wind_directions, wind_speeds): sigma_1 = Iref * (0.75 * wind_speeds + offset) return sigma_1 / wind_speeds self.assign_ti_using_wd_ws_function(iref_func)
[docs] def plot_ti_over_ws( self, ax=None, marker=".", ls="None", color="k", ): """ Scatter plot the turbulence_intensities against wind_speeds Args: ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes on which the turbulence intensity is plotted. Defaults to None. marker (str, optional): Scatter plot marker style. Defaults to ".". ls (str, optional): Scatter plot line style. Defaults to "None". color (str, optional): Scatter plot color. Defaults to "k". Returns: :py:class:`matplotlib.pyplot.axes`: A figure axes object containing the plotted turbulence intensities as a function of wind speed. """ # TODO: Plot mean and std. devs. of TI in each ws bin in addition to # individual points # Set up figure if ax is None: _, ax = plt.subplots() ax.plot(self.ws_flat, self.ti_table_flat * 100, marker=marker, ls=ls, color=color) ax.set_xlabel("Wind Speed (m/s)") ax.set_ylabel("Turbulence Intensity (%)") ax.grid(True)
[docs] def assign_value_using_wd_ws_function(self, func, normalize=False): """ Use the passed in function to assign new values to the value table. Args: func (function): Function which accepts wind_directions as its first argument and wind_speeds as second argument and returns values. normalize (bool, optional): If True, the value array will be normalized by the mean value. Defaults to False. """ self.value_table = func(self.wd_grid, self.ws_grid) if normalize: self.value_table /= np.sum(self.freq_table * self.value_table) self._build_gridded_and_flattened_version()
[docs] def assign_value_piecewise_linear( self, value_zero_ws=1.425, ws_knee=4.5, slope_1=0.0, slope_2=-0.135, limit_to_zero=False, normalize=False, ): """ Define value as a continuous piecewise linear function of wind speed with two line segments. The default parameters yield a value function that approximates the normalized mean electricity price vs. wind speed curve for the SPP market in the U.S. for years 2018-2020 from figure 7 in Simley et al. "The value of wake steering wind farm flow control in US energy markets," Wind Energy Science, 2024. https://doi.org/10.5194/wes-9-219-2024. This default value function is constant at low wind speeds, then linearly decreases above 4.5 m/s. Args: value_zero_ws (float, optional): The value when wind speed is zero. Defaults to 1.425. ws_knee (float, optional): The wind speed separating line segments 1 and 2. Default = 4.5 m/s. slope_1 (float, optional): The slope of the first line segment (unit of value per m/s). Defaults to zero. slope_2 (float, optional): The slope of the second line segment (unit of value per m/s). Defaults to -0.135. limit_to_zero (bool, optional): If True, negative values will be set to zero. Defaults to False. normalize (bool, optional): If True, the value array will be normalized by the mean value. Defaults to False. """ def piecewise_linear_value_func(wind_directions, wind_speeds): value = np.zeros_like(wind_speeds, dtype=float) value[wind_speeds < ws_knee] = ( slope_1 * wind_speeds[wind_speeds < ws_knee] + value_zero_ws ) offset_2 = (slope_1 - slope_2) * ws_knee + value_zero_ws value[wind_speeds >= ws_knee] = slope_2 * wind_speeds[wind_speeds >= ws_knee] + offset_2 if limit_to_zero: value[value < 0] = 0.0 return value self.assign_value_using_wd_ws_function(piecewise_linear_value_func, normalize)
[docs] def plot_value_over_ws( self, ax=None, marker=".", ls="None", color="k", ): """ Scatter plot the value of the energy generated against wind speed. Args: ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes on which the value is plotted. Defaults to None. marker (str, optional): Scatter plot marker style. Defaults to ".". ls (str, optional): Scatter plot line style. Defaults to "None". color (str, optional): Scatter plot color. Defaults to "k". Returns: :py:class:`matplotlib.pyplot.axes`: A figure axes object containing the plotted value as a function of wind speed. """ # TODO: Plot mean and std. devs. of value in each ws bin in addition to # individual points # Set up figure if ax is None: _, ax = plt.subplots() ax.plot(self.ws_flat, self.value_table_flat, marker=marker, ls=ls, color=color) ax.set_xlabel("Wind Speed (m/s)") ax.set_ylabel("Value") ax.grid(True)
[docs] @staticmethod def read_csv_long( file_path: str, ws_col: str = "wind_speeds", wd_col: str = "wind_directions", ti_col_or_value: str | float = "turbulence_intensities", freq_col: str | None = None, sep: str = ",", ) -> WindRose: """ Read a long-formatted CSV file into the wind rose object. By long, what is meant is that the wind speed, wind direction combination is given for each row in the CSV file. The wind speed, wind direction, are given in separate columns, and the frequency of occurrence of each combination is given in a separate column. The frequency column is optional, and if not provided, uniform frequency of all bins is assumed. The value of ti_col_or_value can be either a string or a float. If it is a string, it is assumed to be the name of the column in the CSV file that contains the turbulence intensity values. If it is a float, it is assumed to be a constant turbulence intensity value for all wind speed and direction combinations. Args: file_path (str): Path to the CSV file. ws_col (str): Name of the column in the CSV file that contains the wind speed values. Defaults to 'wind_speeds'. wd_col (str): Name of the column in the CSV file that contains the wind direction values. Defaults to 'wind_directions'. ti_col_or_value (str or float): Name of the column in the CSV file that contains the turbulence intensity values, or a constant turbulence intensity value. freq_col (str): Name of the column in the CSV file that contains the frequency values. Defaults to None in which case constant frequency assumed. sep (str): Delimiter to use. Defaults to ','. Returns: WindRose: Wind rose object created from the CSV file. """ # Read in the CSV file try: df = pd.read_csv(file_path, sep=sep) except FileNotFoundError: # If the file cannot be found, then attempt the level above base_fn = Path(inspect.stack()[-1].filename).resolve().parent file_path = base_fn / file_path df = pd.read_csv(file_path, sep=sep) # Check that ti_col_or_value is a string or a float if not isinstance(ti_col_or_value, (str, float)): raise TypeError("ti_col_or_value must be a string or a float") # Check that the required columns are present if ws_col not in df.columns: raise ValueError(f"Column {ws_col} not found in CSV file") if wd_col not in df.columns: raise ValueError(f"Column {wd_col} not found in CSV file") if ti_col_or_value not in df.columns and isinstance(ti_col_or_value, str): raise ValueError(f"Column {ti_col_or_value} not found in CSV file") if freq_col not in df.columns and freq_col is not None: raise ValueError(f"Column {freq_col} not found in CSV file") # Get the wind speed, wind direction, and turbulence intensity values wind_directions = df[wd_col].values wind_speeds = df[ws_col].values if isinstance(ti_col_or_value, str): turbulence_intensities = df[ti_col_or_value].values else: turbulence_intensities = ti_col_or_value * np.ones(len(wind_speeds)) if freq_col is not None: freq_values = df[freq_col].values else: freq_values = np.ones(len(wind_speeds)) # Normalize freq_values freq_values = freq_values / np.sum(freq_values) # Get the unique values of wind directions and wind speeds unique_wd = np.unique(wind_directions) unique_ws = np.unique(wind_speeds) # Get the step side for wind direction and wind speed wd_step = unique_wd[1] - unique_wd[0] ws_step = unique_ws[1] - unique_ws[0] # Now use TimeSeries to create a wind rose time_series = TimeSeries(wind_directions, wind_speeds, turbulence_intensities) # Now build a new wind rose using the new steps return time_series.to_WindRose(wd_step=wd_step, ws_step=ws_step, bin_weights=freq_values)
[docs] class WindTIRose(WindDataBase): """ WindTIRose is similar to the WindRose class, but contains turbulence intensity as an additional wind rose dimension instead of being defined as a function of wind direction and wind speed. The class is used to drive FLORIS and optimization operations in which the inflow is characterized by the frequency of binned wind speed, wind direction, and turbulence intensity values. Args: wind_directions: NumPy array of wind directions (NDArrayFloat). wind_speeds: NumPy array of wind speeds (NDArrayFloat). turbulence_intensities: NumPy array of turbulence intensities (NDArrayFloat). freq_table: Frequency table for binned wind direction, wind speed, and turbulence intensity values (NDArrayFloat, optional). Must have dimension (n_wind_directions, n_wind_speeds, n_turbulence_intensities). Defaults to None in which case uniform frequency of all bins is assumed. value_table: Value table for binned wind direction, wind speed, and turbulence intensity values (NDArrayFloat, optional). Must have dimension (n_wind_directions, n_wind_speeds, n_turbulence_intensities). Defaults to None in which case uniform values are assumed. Value can be used to weight power in each bin to compute the total value of the energy produced. compute_zero_freq_occurrence: Flag indicating whether to compute zero frequency occurrences (bool, optional). Defaults to False. heterogeneous_map (HeterogeneousMap, optional): A HeterogeneousMap object to define background heterogeneous inflow condition as a function of wind direction and wind speed. Alternatively, a dictionary can be passed in to define a HeterogeneousMap object. Defaults to None. heterogeneous_inflow_config_by_wd (dict, optional): A dictionary containing the following which can be used to define a heterogeneous_map object (note this parameter is kept for backwards compatibility and is not recommended for use): * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). * 'speed_multipliers': A 2D NumPy array (size num_wd (or num_ws) x num_points) of speed multipliers. If neither wind_directions nor wind_speeds are defined, then this should be a single row array * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). Optional. * 'wind_speeds': A 1D NumPy array (size num_ws) of wind speeds (m/s). Optional. Defaults to None. """ def __init__( self, wind_directions: NDArrayFloat, wind_speeds: NDArrayFloat, turbulence_intensities: NDArrayFloat, freq_table: NDArrayFloat | None = None, value_table: NDArrayFloat | None = None, compute_zero_freq_occurrence: bool = False, heterogeneous_map: HeterogeneousMap | dict | None = None, heterogeneous_inflow_config_by_wd: dict | None = None, ): if not isinstance(wind_directions, np.ndarray): raise TypeError("wind_directions must be a NumPy array") if not isinstance(wind_speeds, np.ndarray): raise TypeError("wind_speeds must be a NumPy array") if not isinstance(turbulence_intensities, np.ndarray): raise TypeError("turbulence_intensities must be a NumPy array") # Confirm that both wind_directions and wind_speeds # and turbulence intensities are monotonically # increasing and evenly spaced if len(wind_directions) > 1: # Check monotonically increasing if not np.all(np.diff(wind_directions) > 0): raise ValueError("wind_directions must be monotonically increasing") # Check evenly spaced (Function will raise error if not) check_and_identify_step_size(wind_directions=wind_directions) if len(wind_speeds) > 1: # Check monotonically increasing if not np.all(np.diff(wind_speeds) > 0): raise ValueError("wind_speeds must be monotonically increasing") # Check evenly spaced if not np.allclose(np.diff(wind_speeds), wind_speeds[1] - wind_speeds[0]): raise ValueError("wind_speeds must be evenly spaced") if len(turbulence_intensities) > 1: # Check monotonically increasing if not np.all(np.diff(turbulence_intensities) > 0): raise ValueError("turbulence_intensities must be monotonically increasing") # Check evenly spaced if not np.allclose( np.diff(turbulence_intensities), turbulence_intensities[1] - turbulence_intensities[0], ): raise ValueError("turbulence_intensities must be evenly spaced") # Save the wind speeds and directions self.wind_directions = wind_directions self.wind_speeds = wind_speeds self.turbulence_intensities = turbulence_intensities # If freq_table is not None, confirm it has correct dimension, # otherwise initialize to uniform probability if freq_table is not None: if not freq_table.shape[0] == len(wind_directions): raise ValueError("freq_table first dimension must equal len(wind_directions)") if not freq_table.shape[1] == len(wind_speeds): raise ValueError("freq_table second dimension must equal len(wind_speeds)") if not freq_table.shape[2] == len(turbulence_intensities): raise ValueError( "freq_table third dimension must equal len(turbulence_intensities)" ) self.freq_table = freq_table else: self.freq_table = np.ones( (len(wind_directions), len(wind_speeds), len(turbulence_intensities)) ) # Normalize freq table self.freq_table = self.freq_table / np.sum(self.freq_table) # If value_table is not None, confirm it has correct dimension, # otherwise initialize to all ones if value_table is not None: if not value_table.shape[0] == len(wind_directions): raise ValueError("value_table first dimension must equal len(wind_directions)") if not value_table.shape[1] == len(wind_speeds): raise ValueError("value_table second dimension must equal len(wind_speeds)") if not value_table.shape[2] == len(turbulence_intensities): raise ValueError( "value_table third dimension must equal len(turbulence_intensities)" ) self.value_table = value_table # Save whether zero occurrence cases should be computed self.compute_zero_freq_occurrence = compute_zero_freq_occurrence # Check that heterogeneous_map and heterogeneous_inflow_config_by_wd are not both defined if heterogeneous_map is not None and heterogeneous_inflow_config_by_wd is not None: raise ValueError( "Only one of heterogeneous_map and heterogeneous_inflow_config_by_wd can be" + " defined." ) # If heterogeneous_inflow_config_by_wd is not None, then create a HeterogeneousMap object # using the dictionary if heterogeneous_inflow_config_by_wd is not None: # TODO: In future, add deprectation warning for this parameter here self.heterogeneous_map = HeterogeneousMap(**heterogeneous_inflow_config_by_wd) # Else if heterogeneous_map is not None elif heterogeneous_map is not None: # If heterogeneous_map is a dictionary, then create a HeterogeneousMap object if isinstance(heterogeneous_map, dict): self.heterogeneous_map = HeterogeneousMap(**heterogeneous_map) # Else if heterogeneous_map is a HeterogeneousMap object, then save it elif isinstance(heterogeneous_map, HeterogeneousMap): self.heterogeneous_map = heterogeneous_map # Else raise an error else: raise ValueError( "heterogeneous_map must be a HeterogeneousMap object or a dictionary." ) # Else if neither heterogeneous_map nor heterogeneous_inflow_config_by_wd are defined, # then set heterogeneous_map to None else: self.heterogeneous_map = None # Build the gridded and flatten versions self._build_gridded_and_flattened_version() def _build_gridded_and_flattened_version(self): """ Given the wind direction, wind speed, and turbulence intensity array, build the gridded versions covering all combinations, and then flatten versions which put all combinations into 1D array """ # Gridded wind speed and direction self.wd_grid, self.ws_grid, self.ti_grid = np.meshgrid( self.wind_directions, self.wind_speeds, self.turbulence_intensities, indexing="ij" ) # Flat wind direction, wind speed, and turbulence intensity self.wd_flat = self.wd_grid.flatten() self.ws_flat = self.ws_grid.flatten() self.ti_flat = self.ti_grid.flatten() # Flat frequency table self.freq_table_flat = self.freq_table.flatten() # value table if self.value_table is not None: self.value_table_flat = self.value_table.flatten() else: self.value_table_flat = None # Set mask to non-zero frequency cases depending on compute_zero_freq_occurrence if self.compute_zero_freq_occurrence: # If computing zero freq occurrences, then this is all True self.non_zero_freq_mask = [True for i in range(len(self.freq_table_flat))] else: self.non_zero_freq_mask = self.freq_table_flat > 0.0 # N_findex should only be the calculated cases self.n_findex = np.sum(self.non_zero_freq_mask)
[docs] def unpack(self): """ Unpack the flattened versions of the matrices and return the values accounting for the non_zero_freq_mask """ # The unpacked versions start as the flat version of each wind_directions_unpack = self.wd_flat.copy() wind_speeds_unpack = self.ws_flat.copy() turbulence_intensities_unpack = self.ti_flat.copy() freq_table_unpack = self.freq_table_flat.copy() # Now mask thes values according to self.non_zero_freq_mask wind_directions_unpack = wind_directions_unpack[self.non_zero_freq_mask] wind_speeds_unpack = wind_speeds_unpack[self.non_zero_freq_mask] turbulence_intensities_unpack = turbulence_intensities_unpack[self.non_zero_freq_mask] freq_table_unpack = freq_table_unpack[self.non_zero_freq_mask] # Now get unpacked value table if self.value_table_flat is not None: value_table_unpack = self.value_table_flat[self.non_zero_freq_mask].copy() else: value_table_unpack = None # If heterogeneous_map is not None, then get the heterogeneous_inflow_config if self.heterogeneous_map is not None: heterogeneous_inflow_config = self.heterogeneous_map.get_heterogeneous_inflow_config( wind_directions=wind_directions_unpack, wind_speeds=wind_speeds_unpack ) else: heterogeneous_inflow_config = None return ( wind_directions_unpack, wind_speeds_unpack, turbulence_intensities_unpack, freq_table_unpack, value_table_unpack, heterogeneous_inflow_config, )
[docs] def aggregate(self, wd_step=None, ws_step=None, ti_step=None, inplace=False): """ Wrapper for downsample method for backwards compatibility """ return self.downsample(wd_step, ws_step, ti_step, inplace)
[docs] def downsample(self, wd_step=None, ws_step=None, ti_step=None, inplace=False): """ Aggregates the wind TI rose into fewer wind direction, wind speed and TI bins. It is necessary the wd_step and ws_step ti_step passed in are at least as large as the current wind direction and wind speed steps. If they are not, the function will raise an error. The function will return a new WindTIRose object with the aggregated wind direction, wind speed and TI bins. If inplace is set to True, the current WindTIRose object will be updated with the aggregated bins. Args: wd_step: Step size for wind direction resampling (float, optional). ws_step: Step size for wind speed resampling (float, optional). ti_step: Step size for turbulence intensity resampling (float, optional). inplace: Flag indicating whether to update the current WindTIRose. Defaults to False. Returns: WindTIRose: Aggregated wind TI rose based on the provided or default step sizes. Notes: - Returns an aggregated version of the wind TI rose using new `ws_step`, `wd_step`, and `ti_step`. - Uses the bin weights feature in TimeSeries to aggregate the wind rose. - If `ws_step`, `wd_step`, or `ti_step` are not specified, it uses the current values. """ # If ws_step is passed in, confirm is it at least as large as the current step if ws_step is not None: if len(self.wind_speeds) >= 2: current_ws_step = self.wind_speeds[1] - self.wind_speeds[0] if ws_step < current_ws_step: raise ValueError( "ws_step provided must be at least as large as the current ws_step " f"({current_ws_step} m/s)" ) # If wd_step is passed in, confirm is it at least as large as the current step if wd_step is not None: if len(self.wind_directions) >= 2: current_wd_step = check_and_identify_step_size(wind_directions=self.wind_directions) if wd_step < current_wd_step: raise ValueError( "wd_step provided must be at least as large as the current wd_step " f"({current_wd_step} degrees)" ) # If ti_step is passed in, confirm is it at least as large as the current step if ti_step is not None: if len(self.turbulence_intensities) >= 2: current_ti_step = self.turbulence_intensities[1] - self.turbulence_intensities[0] if ti_step < current_ti_step: raise ValueError( "ti_step provided must be at least as large as the current ti_step " f"({current_ti_step})" ) # If ws_step, wd_step or ti_step is none, set it to the current step if ws_step is None: if len(self.wind_speeds) >= 2: ws_step = self.wind_speeds[1] - self.wind_speeds[0] else: # wind rose will have only a single wind speed, and we assume a ws_step of 1 ws_step = 1.0 if wd_step is None: if len(self.wind_directions) >= 2: wd_step = check_and_identify_step_size(wind_directions=self.wind_directions) else: # wind rose will have only a single wind direction, and we assume a wd_step of 1 wd_step = 1.0 if ti_step is None: if len(self.turbulence_intensities) >= 2: ti_step = self.turbulence_intensities[1] - self.turbulence_intensities[0] else: # wind rose will have only a single TI, and we assume a ti_step of 1 ti_step = 1.0 # Pass the flat versions of each quantity to build a TimeSeries model time_series = TimeSeries( self.wd_flat, self.ws_flat, self.ti_flat, self.value_table_flat, self.heterogeneous_map, ) # Now build a new wind rose using the new steps aggregated_wind_rose = time_series.to_WindTIRose( wd_step=wd_step, ws_step=ws_step, ti_step=ti_step, bin_weights=self.freq_table_flat ) if inplace: self.__init__( aggregated_wind_rose.wind_directions, aggregated_wind_rose.wind_speeds, aggregated_wind_rose.turbulence_intensities, aggregated_wind_rose.freq_table, aggregated_wind_rose.value_table, aggregated_wind_rose.compute_zero_freq_occurrence, aggregated_wind_rose.heterogeneous_map, ) else: return aggregated_wind_rose
[docs] def resample_by_interpolation(self, wd_step=None, ws_step=None, method="linear", inplace=False): """ Wrapper to upsample method for backwards compatibility """ return self.upsample(wd_step, ws_step, method, inplace)
[docs] def upsample(self, wd_step=None, ws_step=None, ti_step=None, method="linear", inplace=False): """ Resample the wind TI rose using interpolation. The method can be either 'linear' or 'nearest'. If inplace is set to True, the current WindTIRose object will be updated with the resampled bins. Args: wd_step: Step size for wind direction resampling (float, optional). If None, the current step size will be used. Defaults to None. ws_step: Step size for wind speed resampling (float, optional). If None, the current step size will be used. Defaults to None. ti_step: Step size for turbulence intensity resampling (float, optional). If None, the current step size will be used. Defaults to None. method: Interpolation method to use (str, optional). Can be either 'linear' or 'nearest'. Defaults to "linear". inplace: Flag indicating whether to update the current WindRose object when True or return a new WindRose object when False (bool, optional). Defaults to False. Returns: WindRose: Resampled wind rose based on the provided or default step sizes. Only returned if inplace = False. """ if method == "linear": interpolator = LinearNDInterpolator elif method == "nearest": interpolator = NearestNDInterpolator else: raise ValueError( f"Unknown interpolation method: '{method}'. " "Available methods are 'linear' and 'nearest'" ) # First establish the current ws_step and wd_step and ti_step if len(self.wind_speeds) >= 2: ws_step_current = self.wind_speeds[1] - self.wind_speeds[0] else: # wind rose will have only a single wind speed, and we assume a ws_step of 1 ws_step_current = 1.0 if len(self.wind_directions) >= 2: wd_step_current = check_and_identify_step_size(wind_directions=self.wind_directions) else: # wind rose will have only a single wind direction, and we assume a wd_step of 1 wd_step_current = 1.0 if len(self.turbulence_intensities) >= 2: ti_step_current = self.turbulence_intensities[1] - self.turbulence_intensities[0] else: # wind rose will have only a single turbulence intensity, # and we assume a ti_step of 1 ti_step_current = 1.0 # If either ws_step or wd_step or ti_step is None, set it to the current step if ws_step is None: ws_step = ws_step_current if wd_step is None: wd_step = wd_step_current if ti_step is None: ti_step = ti_step_current # Make sure upsampling is appropriate if wd_step > wd_step_current: raise ValueError( f"Provided wd_step ({wd_step}) is larger than the current " f" wind direction step size. ({wd_step_current} degrees)" " Use the downsample method." ) if ws_step > ws_step_current: raise ValueError( f"Provided ws_step ({ws_step}) is larger than " f"the current wind speed step size. ({ws_step_current} m/s)" " Use the downsample method." ) if ti_step > ti_step_current: raise ValueError( f"Provided ti_step ({ti_step}) is larger than " f"the current turbulence intensity step size. ({ti_step_current})" " Use the downsample method." ) # Get the current wind directions in adjacent from (ie 0, 2 358 -> -2, 0 ,2) if len(self.wind_directions) >= 2: current_wind_directions, adjacent_sort_index = make_wind_directions_adjacent( self.wind_directions ) else: current_wind_directions = self.wind_directions adjacent_sort_index = np.arange(len(current_wind_directions)) # Identify the covered range of wind directions wd_range_min_current = np.min(current_wind_directions) - wd_step_current / 2.0 wd_range_max_current = np.max(current_wind_directions) + wd_step_current / 2.0 # Look for unlikely case where for example wind directions are 8, 28, ... 358 if wd_range_max_current > 360: # TODO: Handle this case without an error raise ValueError( "Cannot upsample wind rose for case when wind directions are defined" " such that 0 degrees is included by bins to the left of 0 degrees. " ) # Identify the new minimum wind direction wd_min_new = wd_range_min_current + wd_step / 2.0 wd_max_new = wd_range_max_current - wd_step / 2.0 new_wind_directions = np.arange(wd_min_new, wd_max_new + wd_step / 2.0, wd_step) # Set up the new wind speeds ws_range_min_current = np.min(self.wind_speeds) - ws_step_current / 2.0 ws_range_max_current = np.max(self.wind_speeds) + ws_step_current / 2.0 ws_min_new = ws_range_min_current + ws_step / 2.0 ws_max_new = ws_range_max_current - ws_step / 2.0 # Force the new ws_min to 0 if negative if ws_min_new < 0: ws_min_new = 0.0 new_wind_speeds = np.arange(ws_min_new, ws_max_new + ws_step / 2.0, ws_step) # Set up the new turbulence intensities ti_range_min_current = np.min(self.turbulence_intensities) - ti_step_current / 2.0 ti_range_max_current = np.max(self.turbulence_intensities) + ti_step_current / 2.0 ti_min_new = ti_range_min_current + ti_step / 2.0 ti_max_new = ti_range_max_current - ti_step / 2.0 # Force the new ti_min to 0 if negative if ti_min_new < 0: ti_min_new = 0.0 new_turbulence_intensities = np.arange(ti_min_new, ti_max_new + ti_step / 2.0, ti_step) # Set up for interpolation by copying the current values # and making sure they are sorted according to the adjacent wind directions wind_direction_column = current_wind_directions.copy() wind_speed_column = self.wind_speeds.copy() turbulence_intensity_column = self.turbulence_intensities.copy() freq_matrix = self.freq_table.copy()[adjacent_sort_index, :, :] if self.value_table is not None: value_matrix = self.value_table.copy()[adjacent_sort_index, :, :] else: value_matrix = None # For padding wind directions, there are two cases to consider. In the first, # say that the wind directions are 30, 40, 50. In this case it's important append # 30 and 50 to 35 and 55 to ensure the interpolation covers the full range of data # This is the case when wind directions doesn't cover the full range of possible # degrees (0-360) if np.abs((wd_range_min_current % 360.0) - (wd_range_max_current % 360.0)) > 1e-6: wind_direction_column = np.concatenate( ( np.array([wd_range_min_current]), wind_direction_column, np.array([wd_range_max_current]) ) ) freq_matrix = np.concatenate( (freq_matrix[0, :, :][None, :, :], freq_matrix, freq_matrix[-1, :, :][None, :, :]), axis=0 ) if self.value_table is not None: value_matrix = np.concatenate( ( value_matrix[0, :, :][None, :, :], value_matrix, value_matrix[-1, :, :][None, :, :] ), axis=0 ) # In the alternative case, where the wind directions cover the full range # ie, 0, 10, 20 30, ...350, then need to place 0 at 360 and 350 at -10 # to cover all interpolations else: # Pad wind direction column with min_wd + 360 wind_direction_column = np.concatenate( ( [np.max(self.wind_directions) - 360.0], wind_direction_column, [np.min(self.wind_directions) + 360.0], ) ) # Pad the remaining with the appropriate value freq_matrix = np.vstack( (freq_matrix[-1, :, :][None, :, :], freq_matrix, freq_matrix[0, :, :][None, :, :]) ) if self.value_table is not None: value_matrix = np.vstack( ( value_matrix[-1, :, :][None, :, :], value_matrix, value_matrix[0, :, :][None, :, :], ) ) # Pad out the wind speeds wind_speed_column = np.concatenate( ( np.array([ws_range_min_current]), wind_speed_column, np.array([ws_range_max_current]) ) ) freq_matrix = np.concatenate( (freq_matrix[:, 0, :][:, None, :], freq_matrix, freq_matrix[:, -1, :][:, None, :]), axis=1 ) if self.value_table is not None: value_matrix = np.concatenate( ( value_matrix[:, 0, :][:, None, :], value_matrix, value_matrix[:, -1, :][:, None, :] ), axis=1 ) # Pad out the turbulence intensities turbulence_intensity_column = np.concatenate( ( np.array([ti_range_min_current]), turbulence_intensity_column, np.array([ti_range_max_current]) ) ) freq_matrix = np.concatenate( (freq_matrix[:, :, 0][:, :, None], freq_matrix, freq_matrix[:, :, -1][:, :, None]), axis=2 ) if self.value_table is not None: value_matrix = np.concatenate( ( value_matrix[:, :, 0][:, :, None], value_matrix, value_matrix[:, :, -1][:, :, None] ), axis=2 ) # Grid wind directions, wind speeds and turbulence intensities to match the # freq_matrix when flattened wd_grid, ws_grid, ti_grid = np.meshgrid( wind_direction_column, wind_speed_column, turbulence_intensity_column, indexing="ij" ) # Form wd_grid and ws_grid to a 2-column matrix wd_ws_ti_mat = np.array([wd_grid.flatten(), ws_grid.flatten(), ti_grid.flatten()]).T # Build the interpolator from wd_grid, ws_grid, to ti_matrix, freq_matrix and value_matrix freq_interpolator = interpolator(wd_ws_ti_mat, freq_matrix.flatten()) if self.value_table is not None: value_interpolator = interpolator(wd_ws_ti_mat, value_matrix.flatten()) # Grid the new wind directions and wind speeds new_wd_grid, new_ws_grid, new_ti_grid = np.meshgrid( new_wind_directions, new_wind_speeds, new_turbulence_intensities, indexing="ij" ) new_wd_ws_ti_mat = np.array( [new_wd_grid.flatten(), new_ws_grid.flatten(), new_ti_grid.flatten()] ).T # Create the new freq_matrix and value_matrix new_freq_matrix = freq_interpolator(new_wd_ws_ti_mat).reshape( (len(new_wind_directions), len(new_wind_speeds), len(new_turbulence_intensities)) ) if self.value_table is not None: new_value_matrix = value_interpolator(new_wd_ws_ti_mat).reshape( (len(new_wind_directions), len(new_wind_speeds), len(new_turbulence_intensities)) ) else: new_value_matrix = None # Wrap new_wind_directions to 0-360 new_wind_directions = new_wind_directions % 360 # Finally sort new_wind_directions, and re-order new_ti_matrix, new_freq_matrix # and new_value_matrix accordingly sort_indices = np.argsort(new_wind_directions) new_wind_directions = new_wind_directions[sort_indices] new_freq_matrix = new_freq_matrix[sort_indices, :, :] if self.value_table is not None: new_value_matrix = new_value_matrix[sort_indices, :, :] # Create the resampled wind rose resampled_wind_rose = WindTIRose( new_wind_directions, new_wind_speeds, new_turbulence_intensities, new_freq_matrix, new_value_matrix, self.compute_zero_freq_occurrence, self.heterogeneous_map, ) if inplace: self.__init__( resampled_wind_rose.wind_directions, resampled_wind_rose.wind_speeds, resampled_wind_rose.turbulence_intensities, resampled_wind_rose.freq_table, resampled_wind_rose.value_table, resampled_wind_rose.compute_zero_freq_occurrence, resampled_wind_rose.heterogeneous_map, ) else: return resampled_wind_rose
[docs] def plot( self, ax=None, wind_rose_var="ws", color_map="viridis_r", wd_step=15.0, wind_rose_var_step=None, legend_kwargs={"label": "Wind speed [m/s]"}, ): """ This method creates a wind rose plot showing the frequency of occurrence of either the specified wind direction and wind speed bins or wind direction and turbulence intensity bins. If no axis is provided, a new one is created. **Note**: Based on code provided by Patrick Murphy from the University of Colorado Boulder. Args: ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes on which the wind rose is plotted. Defaults to None. wind_rose_var (str, optional): The variable to display in the wind rose plot in addition to wind direction. If wind_rose_var = "ws", wind speed frequencies will be plotted. If wind_rose_var = "ti", turbulence intensity frequencies will be plotted. Defaults to "ws". color_map (str, optional): Colormap to use. Defaults to 'viridis_r'. wd_step (float, optional): Step size for wind direction. Defaults to 15 degrees. wind_rose_var_step (float, optional): Step size for other wind rose variable. Defaults to None. If unspecified, a value of 5 m/s will be used if wind_rose_var = "ws", and a value of 4% will be used if wind_rose_var = "ti". legend_kwargs (dict, optional): Keyword arguments to be passed to ax.legend(). Defaults to {"label": "Wind speed [m/s]"}. Returns: :py:class:`matplotlib.pyplot.axes`: A figure axes object containing the plotted wind rose. """ if wind_rose_var not in {"ws", "ti"}: raise ValueError( 'wind_rose_var must be either "ws" or "ti" for wind speed or turbulence intensity.' ) # Get a aggregated wind_rose if wind_rose_var == "ws": if wind_rose_var_step is None: wind_rose_var_step = 5.0 wind_rose_aggregated = self.downsample(wd_step, ws_step=wind_rose_var_step) var_bins = wind_rose_aggregated.wind_speeds freq_table = wind_rose_aggregated.freq_table.sum(2) # sum along TI dimension else: # wind_rose_var == "ti" if wind_rose_var_step is None: wind_rose_var_step = 0.04 wind_rose_aggregated = self.downsample(wd_step, ti_step=wind_rose_var_step) var_bins = wind_rose_aggregated.turbulence_intensities freq_table = wind_rose_aggregated.freq_table.sum(1) # sum along wind speed dimension wd_bins = wind_rose_aggregated.wind_directions # Set up figure if ax is None: _, ax = plt.subplots(subplot_kw={"polar": True}) # Get a color array color_array = plt.get_cmap(color_map, len(var_bins)) norm_wv = mpl.colors.Normalize(vmin=np.min(var_bins), vmax=np.max(var_bins)) sm_wv = mpl.cm.ScalarMappable(norm=norm_wv, cmap=color_array) for wd_idx, wd in enumerate(wd_bins): rects = [] freq_table_sub = freq_table[wd_idx, :].flatten() for var_idx, ws in reversed(list(enumerate(var_bins))): plot_val = freq_table_sub[: var_idx + 1].sum() rects.append( ax.bar( np.radians(wd), plot_val, width=0.9 * np.radians(wd_step), color=color_array(var_idx), edgecolor="k", ) ) # Configure the plot ax.figure.colorbar(sm_wv, ax=ax, **legend_kwargs) ax.figure.tight_layout() ax.set_theta_direction(-1) ax.set_theta_offset(np.pi / 2.0) ax.set_theta_zero_location("N") ax.set_xticks(np.arange(0, 2 * np.pi, np.pi / 4)) ax.set_xticklabels(["N", "NE", "E", "SE", "S", "SW", "W", "NW"]) return ax
[docs] def plot_ti_over_ws( self, ax=None, marker=".", ls="-", color="k", ): """ Plot the mean turbulence intensity against wind speed. Args: ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes on which the mean turbulence intensity is plotted. Defaults to None. marker (str, optional): Scatter plot marker style. Defaults to ".". ls (str, optional): Scatter plot line style. Defaults to "None". color (str, optional): Scatter plot color. Defaults to "k". Returns: :py:class:`matplotlib.pyplot.axes`: A figure axes object containing the plotted mean turbulence intensities as a function of wind speed. """ # TODO: Plot individual points and std. devs. of TI in addition to mean # values # Set up figure if ax is None: _, ax = plt.subplots() # get mean TI for each wind speed by averaging along wind direction and # TI dimensions mean_ti_values = (self.ti_grid * self.freq_table).sum((0, 2)) / self.freq_table.sum((0, 2)) ax.plot(self.wind_speeds, mean_ti_values * 100, marker=marker, ls=ls, color=color) ax.set_xlabel("Wind Speed (m/s)") ax.set_ylabel("Mean Turbulence Intensity (%)") ax.grid(True)
[docs] def assign_value_using_wd_ws_ti_function(self, func, normalize=False): """ Use the passed in function to assign new values to the value table. Args: func (function): Function which accepts wind_directions as its first argument, wind_speeds as its second argument, and turbulence_intensities as its third argument and returns values. normalize (bool, optional): If True, the value array will be normalized by the mean value. Defaults to False. """ self.value_table = func(self.wd_grid, self.ws_grid, self.ti_grid) if normalize: self.value_table /= np.sum(self.freq_table * self.value_table) self._build_gridded_and_flattened_version()
[docs] def assign_value_piecewise_linear( self, value_zero_ws=1.425, ws_knee=4.5, slope_1=0.0, slope_2=-0.135, limit_to_zero=False, normalize=False, ): """ Define value as a continuous piecewise linear function of wind speed with two line segments. The default parameters yield a value function that approximates the normalized mean electricity price vs. wind speed curve for the SPP market in the U.S. for years 2018-2020 from figure 7 in Simley et al. "The value of wake steering wind farm flow control in US energy markets," Wind Energy Science, 2024. https://doi.org/10.5194/wes-9-219-2024. This default value function is constant at low wind speeds, then linearly decreases above 4.5 m/s. Args: value_zero_ws (float, optional): The value when wind speed is zero. Defaults to 1.425. ws_knee (float, optional): The wind speed separating line segments 1 and 2. Default = 4.5 m/s. slope_1 (float, optional): The slope of the first line segment (unit of value per m/s). Defaults to zero. slope_2 (float, optional): The slope of the second line segment (unit of value per m/s). Defaults to -0.135. limit_to_zero (bool, optional): If True, negative values will be set to zero. Defaults to False. normalize (bool, optional): If True, the value array will be normalized by the mean value. Defaults to False. """ def piecewise_linear_value_func(wind_directions, wind_speeds, turbulence_intensities): value = np.zeros_like(wind_speeds, dtype=float) value[wind_speeds < ws_knee] = ( slope_1 * wind_speeds[wind_speeds < ws_knee] + value_zero_ws ) offset_2 = (slope_1 - slope_2) * ws_knee + value_zero_ws value[wind_speeds >= ws_knee] = slope_2 * wind_speeds[wind_speeds >= ws_knee] + offset_2 if limit_to_zero: value[value < 0] = 0.0 return value self.assign_value_using_wd_ws_ti_function(piecewise_linear_value_func, normalize)
[docs] def plot_value_over_ws( self, ax=None, marker=".", ls="None", color="k", ): """ Scatter plot the value of the energy generated against wind speed. Args: ax (:py:class:`matplotlib.pyplot.axes`, optional): The figure axes on which the value is plotted. Defaults to None. marker (str, optional): Scatter plot marker style. Defaults to ".". ls (str, optional): Scatter plot line style. Defaults to "None". color (str, optional): Scatter plot color. Defaults to "k". Returns: :py:class:`matplotlib.pyplot.axes`: A figure axes object containing the plotted value as a function of wind speed. """ # TODO: Plot mean and std. devs. of value in each ws bin in addition to # individual points # Set up figure if ax is None: _, ax = plt.subplots() ax.plot(self.ws_flat, self.value_table_flat, marker=marker, ls=ls, color=color) ax.set_xlabel("Wind Speed (m/s)") ax.set_ylabel("Value") ax.grid(True)
[docs] @staticmethod def read_csv_long( file_path: str, ws_col: str = "wind_speeds", wd_col: str = "wind_directions", ti_col: str = "turbulence_intensities", freq_col: str | None = None, sep: str = ",", ) -> WindTIRose: """ Read a long-formatted CSV file into the WindTIRose object. By long, what is meant is that the wind speed, wind direction and turbulence intensities combination is given for each row in the CSV file. The wind speed, wind direction, and turbulence intensity are given in separate columns, and the frequency of occurrence of each combination is given in a separate column. The frequency column is optional, and if not provided, uniform frequency of all bins is assumed. Args: file_path (str): Path to the CSV file. ws_col (str): Name of the column in the CSV file that contains the wind speed values. Defaults to 'wind_speeds'. wd_col (str): Name of the column in the CSV file that contains the wind direction values. Defaults to 'wind_directions'. ti_col (str): Name of the column in the CSV file that contains the turbulence intensity values. freq_col (str): Name of the column in the CSV file that contains the frequency values. Defaults to None in which case constant frequency assumed. sep (str): Delimiter to use. Defaults to ','. Returns: WindRose: Wind rose object created from the CSV file. """ # Read in the CSV file df = pd.read_csv(file_path, sep=sep) # Check that the required columns are present if ws_col not in df.columns: raise ValueError(f"Column {ws_col} not found in CSV file") if wd_col not in df.columns: raise ValueError(f"Column {wd_col} not found in CSV file") if ti_col not in df.columns: raise ValueError(f"Column {ti_col} not found in CSV file") if freq_col not in df.columns and freq_col is not None: raise ValueError(f"Column {freq_col} not found in CSV file") # Get the wind speed, wind direction, and turbulence intensity values wind_directions = df[wd_col].values wind_speeds = df[ws_col].values turbulence_intensities = df[ti_col].values if freq_col is not None: freq_values = df[freq_col].values else: freq_values = np.ones(len(wind_speeds)) # Normalize freq_values freq_values = freq_values / np.sum(freq_values) # Get the unique values of wind directions and wind speeds unique_wd = np.unique(wind_directions) unique_ws = np.unique(wind_speeds) unique_ti = np.unique(turbulence_intensities) # Get the step side for wind direction and wind speed wd_step = unique_wd[1] - unique_wd[0] ws_step = unique_ws[1] - unique_ws[0] ti_step = unique_ti[1] - unique_ti[0] # Now use TimeSeries to create a wind rose time_series = TimeSeries(wind_directions, wind_speeds, turbulence_intensities) # Now build a new wind rose using the new steps return time_series.to_WindTIRose( wd_step=wd_step, ws_step=ws_step, ti_step=ti_step, bin_weights=freq_values )
[docs] class TimeSeries(WindDataBase): """ The TimeSeries class is used to drive FLORIS and optimization operations in which the inflow is by a sequence of wind direction, wind speed and turbulence intensity values. Each input of wind direction, wind speed, and turbulence intensity can be assigned as an array of values or a single value. At least one of wind_directions, wind_speeds, or turbulence_intensities must be an array. If arrays are provided, they must be the same length as the other arrays or the single values. If single values are provided, then an array of the same length as the other arrays will be created with the single value. Args: wind_directions (float, NDArrayFloat): Wind direction. Can be a single value or an array of values. wind_speeds (float, NDArrayFloat): Wind speed. Can be a single value or an array of values. turbulence_intensities (float, NDArrayFloat): Turbulence intensity. Can be a single value or an array of values. values (NDArrayFloat, optional): Values associated with each wind direction, wind speed, and turbulence intensity. Defaults to None. heterogeneous_map (HeterogeneousMap, optional): A HeterogeneousMap object to define background heterogeneous inflow condition as a function of wind direction and wind speed. Alternatively, a dictionary can be passed in to define a HeterogeneousMap object. Defaults to None. heterogeneous_inflow_config_by_wd (dict, optional): A dictionary containing the following which can be used to define a heterogeneous_map object (note this parameter is kept for backwards compatibility and is not recommended for use): * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). * 'speed_multipliers': A 2D NumPy array (size num_wd (or num_ws) x num_points) of speed multipliers. If neither wind_directions nor wind_speeds are defined, then this should be a single row array * 'wind_directions': A 1D NumPy array (size num_wd) of wind directions (degrees). Optional. * 'wind_speeds': A 1D NumPy array (size num_ws) of wind speeds (m/s). Optional. Defaults to None. heterogeneous_inflow_config (dict, optional): A dictionary containing the following keys. Defaults to None. * 'speed_multipliers': A 2D NumPy array (size n_findex x num_points) of speed multipliers. * 'x': A 1D NumPy array (size num_points) of x-coordinates (meters). * 'y': A 1D NumPy array (size num_points) of y-coordinates (meters). """ def __init__( self, wind_directions: float | NDArrayFloat, wind_speeds: float | NDArrayFloat, turbulence_intensities: float | NDArrayFloat, values: NDArrayFloat | None = None, heterogeneous_map: HeterogeneousMap | dict | None = None, heterogeneous_inflow_config_by_wd: dict | None = None, heterogeneous_inflow_config: dict | None = None, ): # Check that wind_directions, wind_speeds, and turbulence_intensities are either numpy array # of floats if not isinstance(wind_directions, (float, np.ndarray)): raise TypeError("wind_directions must be a float or a NumPy array") if not isinstance(wind_speeds, (float, np.ndarray)): raise TypeError("wind_speeds must be a float or a NumPy array") if not isinstance(turbulence_intensities, (float, np.ndarray)): raise TypeError("turbulence_intensities must be a float or a NumPy array") # At least one of wind_directions, wind_speeds, or turbulence_intensities must be an array if ( not isinstance(wind_directions, np.ndarray) and not isinstance(wind_speeds, np.ndarray) and not isinstance(turbulence_intensities, np.ndarray) ): raise TypeError( "At least one of wind_directions, wind_speeds, or " " turbulence_intensities must be a NumPy array" ) # For each of wind_directions, wind_speeds, and turbulence_intensities provided as # an array, confirm they are the same length if isinstance(wind_directions, np.ndarray) and isinstance(wind_speeds, np.ndarray): if len(wind_directions) != len(wind_speeds): raise ValueError( "wind_directions and wind_speeds must be the same length if provided as arrays" ) if isinstance(wind_directions, np.ndarray) and isinstance( turbulence_intensities, np.ndarray ): if len(wind_directions) != len(turbulence_intensities): raise ValueError( "wind_directions and turbulence_intensities must be " "the same length if provided as arrays" ) if isinstance(wind_speeds, np.ndarray) and isinstance(turbulence_intensities, np.ndarray): if len(wind_speeds) != len(turbulence_intensities): raise ValueError( "wind_speeds and turbulence_intensities must be the " "same length if provided as arrays" ) # For each of wind_directions, wind_speeds, and turbulence_intensities # provided as a single value, set them # to be the same length as those passed in as arrays if isinstance(wind_directions, float): if isinstance(wind_speeds, np.ndarray): wind_directions = np.full(len(wind_speeds), wind_directions) elif isinstance(turbulence_intensities, np.ndarray): wind_directions = np.full(len(turbulence_intensities), wind_directions) if isinstance(wind_speeds, float): if isinstance(wind_directions, np.ndarray): wind_speeds = np.full(len(wind_directions), wind_speeds) elif isinstance(turbulence_intensities, np.ndarray): wind_speeds = np.full(len(turbulence_intensities), wind_speeds) if isinstance(turbulence_intensities, float): if isinstance(wind_directions, np.ndarray): turbulence_intensities = np.full(len(wind_directions), turbulence_intensities) elif isinstance(wind_speeds, np.ndarray): turbulence_intensities = np.full(len(wind_speeds), turbulence_intensities) # If values is not None, must be same length as wind_directions/wind_speeds/ if values is not None: if len(wind_directions) != len(values): raise ValueError("wind_directions and values must be the same length") self.wind_directions = wind_directions self.wind_speeds = wind_speeds self.turbulence_intensities = turbulence_intensities self.values = values # Check that at most one of heterogeneous_inflow_config_by_wd, # heterogeneous_map and heterogeneous_inflow_config is not None if ( sum( [ heterogeneous_inflow_config_by_wd is not None, heterogeneous_map is not None, heterogeneous_inflow_config is not None, ] ) > 1 ): raise ValueError( "Only one of heterogeneous_inflow_config_by_wd, " + "heterogeneous_map, and heterogeneous_inflow_config can be not None." ) # if heterogeneous_inflow_config is not None, then the speed_multipliers # must be the same length as wind_directions # in the 0th dimension if heterogeneous_inflow_config is not None: if len(heterogeneous_inflow_config["speed_multipliers"]) != len(wind_directions): raise ValueError("speed_multipliers must be the same length as wind_directions") # Check heterogeneous_inflow_config and save self.check_heterogeneous_inflow_config(heterogeneous_inflow_config) self.heterogeneous_inflow_config = heterogeneous_inflow_config else: self.heterogeneous_inflow_config = None # If heterogeneous_inflow_config_by_wd is not None, then create a HeterogeneousMap object # using the dictionary if heterogeneous_inflow_config_by_wd is not None: # TODO: In future, add deprectation warning for this parameter here self.heterogeneous_map = HeterogeneousMap(**heterogeneous_inflow_config_by_wd) # Else if heterogeneous_map is not None elif heterogeneous_map is not None: # If heterogeneous_map is a dictionary, then create a HeterogeneousMap object if isinstance(heterogeneous_map, dict): self.heterogeneous_map = HeterogeneousMap(**heterogeneous_map) # Else if heterogeneous_map is a HeterogeneousMap object, then save it elif isinstance(heterogeneous_map, HeterogeneousMap): self.heterogeneous_map = heterogeneous_map # Else raise an error else: raise ValueError( "heterogeneous_map must be a HeterogeneousMap object or a dictionary." ) # Else if neither heterogeneous_map nor heterogeneous_inflow_config_by_wd are defined, # then set heterogeneous_map to None else: self.heterogeneous_map = None # Record findex self.n_findex = len(self.wind_directions)
[docs] def unpack(self): """ Unpack the time series data in a manner consistent with wind rose unpack """ # to match wind_rose, make a uniform frequency uniform_frequency = np.ones_like(self.wind_directions) uniform_frequency = uniform_frequency / uniform_frequency.sum() # If heterogeneous_map is not None, then update # heterogeneous_inflow_config to match wind_directions_unpack if self.heterogeneous_map is not None: heterogeneous_inflow_config = self.heterogeneous_map.get_heterogeneous_inflow_config( wind_directions=self.wind_directions, wind_speeds=self.wind_speeds ) else: heterogeneous_inflow_config = self.heterogeneous_inflow_config return ( self.wind_directions, self.wind_speeds, self.turbulence_intensities, uniform_frequency, self.values, heterogeneous_inflow_config, )
def _wrap_wind_directions_near_360(self, wind_directions, wd_step): """ Wraps the wind directions using `wd_step` to produce a wrapped version where values between [360 - wd_step/2.0, 360] get mapped to negative numbers for binning. Args: wind_directions (NDArrayFloat): NumPy array of wind directions. wd_step (float): Step size for wind direction. Returns: NDArrayFloat: Wrapped version of wind directions. """ wind_directions_wrapped = wind_directions.copy() mask = wind_directions_wrapped >= 360 - wd_step / 2.0 wind_directions_wrapped[mask] = wind_directions_wrapped[mask] - 360.0 return wind_directions_wrapped
[docs] def assign_ti_using_wd_ws_function(self, func): """ Use the passed in function to new assign values to turbulence_intensities Args: func (function): Function which accepts wind_directions as its first argument and wind_speeds as second argument and returns turbulence_intensities """ self.turbulence_intensities = func(self.wind_directions, self.wind_speeds)
[docs] def assign_ti_using_IEC_method(self, Iref=0.07, offset=3.8): """ Define TI as a function of wind speed by specifying an Iref and offset value as in the normal turbulence model in the IEC 61400-1 standard Args: Iref (float): Reference turbulence level, defined as the expected value of TI at 15 m/s. Default = 0.07. Note this value is lower than the values of Iref for turbulence classes A, B, and C in the IEC standard (0.16, 0.14, and 0.12, respectively), but produces TI values more in line with those typically used in FLORIS. When the default Iref and offset are used, the TI at 8 m/s is 8.6%. offset (float): Offset value to equation. Default = 3.8, as defined in the IEC standard to give the expected value of TI for each wind speed. """ if (Iref < 0) or (Iref > 1): raise ValueError("Iref must be >= 0 and <=1") def iref_func(wind_directions, wind_speeds): sigma_1 = Iref * (0.75 * wind_speeds + offset) return sigma_1 / wind_speeds self.assign_ti_using_wd_ws_function(iref_func)
[docs] def assign_value_using_wd_ws_function(self, func, normalize=False): """ Use the passed in function to assign new values to the value table. Args: func (function): Function which accepts wind_directions as its first argument and wind_speeds as second argument and returns values. normalize (bool, optional): If True, the value array will be normalized by the mean value. Defaults to False. """ self.values = func(self.wind_directions, self.wind_speeds) if normalize: self.values /= np.mean(self.values)
[docs] def assign_value_piecewise_linear( self, value_zero_ws=1.425, ws_knee=4.5, slope_1=0.0, slope_2=-0.135, limit_to_zero=False, normalize=False, ): """ Define value as a continuous piecewise linear function of wind speed with two line segments. The default parameters yield a value function that approximates the normalized mean electricity price vs. wind speed curve for the SPP market in the U.S. for years 2018-2020 from figure 7 in Simley et al. "The value of wake steering wind farm flow control in US energy markets," Wind Energy Science, 2024. https://doi.org/10.5194/wes-9-219-2024. This default value function is constant at low wind speeds, then linearly decreases above 4.5 m/s. Args: value_zero_ws (float, optional): The value when wind speed is zero. Defaults to 1.425. ws_knee (float, optional): The wind speed separating line segments 1 and 2. Default = 4.5 m/s. slope_1 (float, optional): The slope of the first line segment (unit of value per m/s). Defaults to zero. slope_2 (float, optional): The slope of the second line segment (unit of value per m/s). Defaults to -0.135. limit_to_zero (bool, optional): If True, negative values will be set to zero. Defaults to False. normalize (bool, optional): If True, the value array will be normalized by the mean value. Defaults to False. """ def piecewise_linear_value_func(wind_directions, wind_speeds): value = np.zeros_like(wind_speeds, dtype=float) value[wind_speeds < ws_knee] = ( slope_1 * wind_speeds[wind_speeds < ws_knee] + value_zero_ws ) offset_2 = (slope_1 - slope_2) * ws_knee + value_zero_ws value[wind_speeds >= ws_knee] = slope_2 * wind_speeds[wind_speeds >= ws_knee] + offset_2 if limit_to_zero: value[value < 0] = 0.0 return value self.assign_value_using_wd_ws_function(piecewise_linear_value_func, normalize)
[docs] def to_WindRose(self, wd_step=2.0, ws_step=1.0, wd_edges=None, ws_edges=None, bin_weights=None): """ Converts the TimeSeries data to a WindRose. Args: wd_step (float, optional): Step size for wind direction (default is 2.0). ws_step (float, optional): Step size for wind speed (default is 1.0). wd_edges (NDArrayFloat, optional): Custom wind direction edges. Defaults to None. ws_edges (NDArrayFloat, optional): Custom wind speed edges. Defaults to None. bin_weights (NDArrayFloat, optional): Bin weights for resampling. Note these are primarily used by the downsample() method. Defaults to None. Returns: WindRose: A WindRose object based on the TimeSeries data. Notes: - If `wd_edges` is defined, it uses it to produce the bin centers. - If `wd_edges` is not defined, it determines `wd_edges` from the step and data. - If `ws_edges` is defined, it uses it for wind speed edges. - If `ws_edges` is not defined, it determines `ws_edges` from the step and data. """ # If wd_edges is defined, then use it to produce the bin centers if wd_edges is not None: wd_step = wd_edges[1] - wd_edges[0] # use wd_step to produce a wrapped version of wind_directions wind_directions_wrapped = self._wrap_wind_directions_near_360( self.wind_directions, wd_step ) # Else, determine wd_edges from the step and data else: wd_edges = np.arange(0.0 - wd_step / 2.0, 360.0, wd_step) # use wd_step to produce a wrapped version of wind_directions wind_directions_wrapped = self._wrap_wind_directions_near_360( self.wind_directions, wd_step ) # Only keep the range with values in it wd_edges = wd_edges[wd_edges + wd_step > wind_directions_wrapped.min()] wd_edges = wd_edges[wd_edges - wd_step <= wind_directions_wrapped.max()] # Define the centers from the edges wd_centers = wd_edges[:-1] + wd_step / 2.0 # Repeat for wind speeds if ws_edges is not None: ws_step = ws_edges[1] - ws_edges[0] else: ws_edges = np.arange(0.0 - ws_step / 2.0, 50.0, ws_step) # Only keep the range with values in it ws_edges = ws_edges[ws_edges + ws_step > self.wind_speeds.min()] ws_edges = ws_edges[ws_edges - ws_step <= self.wind_speeds.max()] # Define the centers from the edges ws_centers = ws_edges[:-1] + ws_step / 2.0 # Now use pandas to get the tables need for wind rose df = pd.DataFrame( { "wd": wind_directions_wrapped, "ws": self.wind_speeds, "freq_val": np.ones(len(wind_directions_wrapped)), } ) # If bin_weights are passed in, apply these to the frequency # this is mostly used when resampling the wind rose if bin_weights is not None: df = df.assign(freq_val=df["freq_val"] * bin_weights) # Add turbulence intensities to dataframe df = df.assign(turbulence_intensities=self.turbulence_intensities) # If values is not none, add to dataframe if self.values is not None: df = df.assign(values=self.values) # Bin wind speed and wind direction and then group things up df = ( df.assign( wd_bin=pd.cut( df.wd, bins=wd_edges, labels=wd_centers, right=False, include_lowest=True ) ) .assign( ws_bin=pd.cut( df.ws, bins=ws_edges, labels=ws_centers, right=False, include_lowest=True ) ) .drop(["wd", "ws"], axis=1) ) # Convert wd_bin and ws_bin to categoricals to ensure all combinations # are considered and then group wd_cat = CategoricalDtype(categories=wd_centers, ordered=True) ws_cat = CategoricalDtype(categories=ws_centers, ordered=True) df = ( df.assign(wd_bin=df["wd_bin"].astype(wd_cat)) .assign(ws_bin=df["ws_bin"].astype(ws_cat)) .groupby(["wd_bin", "ws_bin"], observed=False) .agg(["sum", "mean"]) ) # Flatten and combine levels using an underscore df.columns = ["_".join(col) for col in df.columns] # Collect the frequency table and reshape freq_table = df["freq_val_sum"].values.copy() freq_table = freq_table / freq_table.sum() freq_table = freq_table.reshape((len(wd_centers), len(ws_centers))) # Compute the TI table ti_table = df["turbulence_intensities_mean"].values.copy() ti_table = ti_table.reshape((len(wd_centers), len(ws_centers))) # If values is not none, compute the table if self.values is not None: value_table = df["values_mean"].values.copy() value_table = value_table.reshape((len(wd_centers), len(ws_centers))) else: value_table = None # Return a WindRose return WindRose( wd_centers, ws_centers, ti_table, freq_table, value_table, self.heterogeneous_map, )
[docs] def to_WindTIRose( self, wd_step=2.0, ws_step=1.0, ti_step=0.02, wd_edges=None, ws_edges=None, ti_edges=None, bin_weights=None, ): """ Converts the TimeSeries data to a WindTIRose. Args: wd_step (float, optional): Step size for wind direction (default is 2.0). ws_step (float, optional): Step size for wind speed (default is 1.0). ti_step (float, optional): Step size for turbulence intensity (default is 0.02). wd_edges (NDArrayFloat, optional): Custom wind direction edges. Defaults to None. ws_edges (NDArrayFloat, optional): Custom wind speed edges. Defaults to None. ti_edges (NDArrayFloat, optional): Custom turbulence intensity edges. Defaults to None. bin_weights (NDArrayFloat, optional): Bin weights for resampling. Note these are primarily used by the downsample() method. Defaults to None. Returns: WindRose: A WindTIRose object based on the TimeSeries data. Notes: - If `wd_edges` is defined, it uses it to produce the wind direction bin edges. - If `wd_edges` is not defined, it determines `wd_edges` from the step and data. - If `ws_edges` is defined, it uses it for wind speed edges. - If `ws_edges` is not defined, it determines `ws_edges` from the step and data. - If `ti_edges` is defined, it uses it for turbulence intensity edges. - If `ti_edges` is not defined, it determines `ti_edges` from the step and data. """ # If wd_edges is defined, then use it to produce the bin centers if wd_edges is not None: wd_step = wd_edges[1] - wd_edges[0] # use wd_step to produce a wrapped version of wind_directions wind_directions_wrapped = self._wrap_wind_directions_near_360( self.wind_directions, wd_step ) # Else, determine wd_edges from the step and data else: wd_edges = np.arange(0.0 - wd_step / 2.0, 360.0, wd_step) # use wd_step to produce a wrapped version of wind_directions wind_directions_wrapped = self._wrap_wind_directions_near_360( self.wind_directions, wd_step ) # Only keep the range with values in it wd_edges = wd_edges[wd_edges + wd_step > wind_directions_wrapped.min()] wd_edges = wd_edges[wd_edges - wd_step <= wind_directions_wrapped.max()] # Define the centers from the edges wd_centers = wd_edges[:-1] + wd_step / 2.0 # Repeat for wind speeds if ws_edges is not None: ws_step = ws_edges[1] - ws_edges[0] else: ws_edges = np.arange(0.0 - ws_step / 2.0, 50.0, ws_step) # Only keep the range with values in it ws_edges = ws_edges[ws_edges + ws_step > self.wind_speeds.min()] ws_edges = ws_edges[ws_edges - ws_step <= self.wind_speeds.max()] # Define the centers from the edges ws_centers = ws_edges[:-1] + ws_step / 2.0 # Repeat for turbulence intensities if ti_edges is not None: ti_step = ti_edges[1] - ti_edges[0] else: ti_edges = np.arange(0.0 - ti_step / 2.0, 1.0, ti_step) # Only keep the range with values in it ti_edges = ti_edges[ti_edges + ti_step > self.turbulence_intensities.min()] ti_edges = ti_edges[ti_edges - ti_step <= self.turbulence_intensities.max()] # Define the centers from the edges ti_centers = ti_edges[:-1] + ti_step / 2.0 # Now use pandas to get the tables need for wind rose df = pd.DataFrame( { "wd": wind_directions_wrapped, "ws": self.wind_speeds, "ti": self.turbulence_intensities, "freq_val": np.ones(len(wind_directions_wrapped)), } ) # If bin_weights are passed in, apply these to the frequency # this is mostly used when resampling the wind rose if bin_weights is not None: df = df.assign(freq_val=df["freq_val"] * bin_weights) # If values is not none, add to dataframe if self.values is not None: df = df.assign(values=self.values) # Bin wind speed, wind direction, and turbulence intensity and then group things up df = ( df.assign( wd_bin=pd.cut( df.wd, bins=wd_edges, labels=wd_centers, right=False, include_lowest=True ) ) .assign( ws_bin=pd.cut( df.ws, bins=ws_edges, labels=ws_centers, right=False, include_lowest=True ) ) .assign( ti_bin=pd.cut( df.ti, bins=ti_edges, labels=ti_centers, right=False, include_lowest=True ) ) .drop(["wd", "ws", "ti"], axis=1) ) # Convert wd_bin, ws_bin, and ti_bin to categoricals to ensure all # combinations are considered and then group wd_cat = CategoricalDtype(categories=wd_centers, ordered=True) ws_cat = CategoricalDtype(categories=ws_centers, ordered=True) ti_cat = CategoricalDtype(categories=ti_centers, ordered=True) df = ( df.assign(wd_bin=df["wd_bin"].astype(wd_cat)) .assign(ws_bin=df["ws_bin"].astype(ws_cat)) .assign(ti_bin=df["ti_bin"].astype(ti_cat)) .groupby(["wd_bin", "ws_bin", "ti_bin"], observed=False) .agg(["sum", "mean"]) ) # Flatten and combine levels using an underscore df.columns = ["_".join(col) for col in df.columns] # Collect the frequency table and reshape freq_table = df["freq_val_sum"].values.copy() freq_table = freq_table / freq_table.sum() freq_table = freq_table.reshape((len(wd_centers), len(ws_centers), len(ti_centers))) # If values is not none, compute the table if self.values is not None: value_table = df["values_mean"].values.copy() value_table = value_table.reshape((len(wd_centers), len(ws_centers), len(ti_centers))) else: value_table = None # Return a WindTIRose return WindTIRose( wd_centers, ws_centers, ti_centers, freq_table, value_table, self.heterogeneous_map, )
[docs] class WindRoseWRG(WindDataBase): """ The WindRoseWRG class is a WindData object the represents a wind resource grid (WRG) file to FLORIS. As a WindData object it can be passed to the FlorisModel.set method. A WRG file represents a wind resource as a grid of points where each point has a separate wind rose define by the frequency of each wind direction and the Weibull parameters for each wind direction. WindRoseWRG objects are provided the layout of a wind farm and computes a wind rose at each point in the layout. The wind rose at each point is computed by interpolating the weibull parameter in the WRG file to the point in the layout and using them to compute a WindRose object. Each WindRose object shares wind direction and wind speed, only the frequencies differ. When running a FlorisModel with a WindRoseWRG object, most behaviors are the same except functions which compute an expected value, use separate frequencies for each turbine to weight the individual power bins. Args: filename (str): The name of the WRG file to read. wd_step (float, optional): Step size to use resampling the wind directions given by the WRG file. If None, wd_step and wind_directions are set by the number of sectors in the WRG file. Defaults to None. wind_speeds (NDArrayFloat, optional): Wind speeds to use in the wind rose. Defaults to np.arange(0.0, 26.0, 1.0). ti_table (float, optional): Turbulence intensities table to use for each WindRose object. As in the WindRose ti_table, this can be a single value or an array of values. If an array of values is provided, it must be (len(wind_directions) x len(wind_speeds)). Defaults to 0.06. """ def __init__( self, filename, wd_step=None, wind_speeds=np.arange(0.0, 26.0, 1.0), ti_table=0.06 ): # Read in the WRG file self.filename = filename self.read_wrg_file(filename) # If wd_step is None, then use the wind directions in the WRG file if wd_step is None: self.wind_directions = self._wind_directions_wrg_file self.wd_step = self.wind_directions[1] - self.wind_directions[0] else: self.wind_directions = np.arange(0.0, 360.0, wd_step) self.wd_step = wd_step # Initialize the layouts which will need to be specified self.layout_x = None self.layout_y = None # Save the wind speeds and ti_table self.wind_speeds = wind_speeds self.ti_table = ti_table # Initialize the flat arrays, these will depend on the specified wind speeds self.wd_flat = None self.ws_flat = None self.non_zero_freq_mask = None
[docs] def read_wrg_file(self, filename): """ Read the contents of a WRG file and store the data in the object. Args: filename (str): The name of the WRG file to read. """ # Read the file into data with open(filename, "r") as f: data = f.readlines() # Read the header header = data[0].split() self.nx = int(header[0]) self.ny = int(header[1]) self.xmin = float(header[2]) self.ymin = float(header[3]) self.grid_size = float(header[4]) # The grid of points is implied by the values above self.x_array = np.arange(self.nx) * self.grid_size + self.xmin self.y_array = np.arange(self.ny) * self.grid_size + self.ymin # The number of grid points (n_gid) is the product of the number of points in x and y self.n_gid = self.nx * self.ny # Finally get the number of sectors from the first line after the header self.n_sectors = int(data[1][70:72]) # The wind directions are implied by the number of sectors self._wind_directions_wrg_file = np.arange(0.0, 360.0, 360.0 / self.n_sectors) # Initialize the data arrays which have the same number of # elements as the number of grid points x_gid = np.zeros(self.n_gid) y_gid = np.zeros(self.n_gid) z_gid = np.zeros(self.n_gid) h_gid = np.zeros(self.n_gid) # Initialize the data arrays which are n_gid x n_sectors sector_freq_gid = np.zeros((self.n_gid, self.n_sectors)) weibull_A_gid = np.zeros((self.n_gid, self.n_sectors)) weibull_k_gid = np.zeros((self.n_gid, self.n_sectors)) # Loop through the data and extract the values for gid in range(self.n_gid): line = data[1 + gid] x_gid[gid] = float(line[10:20]) y_gid[gid] = float(line[20:30]) z_gid[gid] = float(line[30:38]) h_gid[gid] = float(line[38:43]) for sector in range(self.n_sectors): # The frequency of the wind in this sector is in probablility * 1000 sector_freq_gid[gid, sector] = ( float(line[72 + sector * 13 : 76 + sector * 13]) / 1000.0 ) # The A and k parameters are in the next 10 characters, with A stored * 10 # and k stored * 100 weibull_A_gid[gid, sector] = float(line[76 + sector * 13 : 80 + sector * 13]) / 10.0 weibull_k_gid[gid, sector] = ( float(line[80 + sector * 13 : 85 + sector * 13]) / 100.0 ) # Save the x_gid and y_gid form for iteration in het map self.x_gid = x_gid self.y_gid = y_gid self.weibull_A_gid = weibull_A_gid self.weibull_k_gid = weibull_k_gid # Save a single value of z and h for the entire grid self.z = z_gid[0] self.h = h_gid[0] # Index the by sector data by x and y self.sector_freq = np.zeros((self.nx, self.ny, self.n_sectors)) self.weibull_A = np.zeros((self.nx, self.ny, self.n_sectors)) self.weibull_k = np.zeros((self.nx, self.ny, self.n_sectors)) for x_idx, x in enumerate(self.x_array): for y_idx, y in enumerate(self.y_array): # Find the indices when x_gid and y_gid are equal to x and y idx = np.where((x_gid == x) & (y_gid == y))[0] # Assign the data to the correct location self.sector_freq[x_idx, y_idx, :] = sector_freq_gid[idx, :] self.weibull_A[x_idx, y_idx, :] = weibull_A_gid[idx, :] self.weibull_k[x_idx, y_idx, :] = weibull_k_gid[idx, :] # Build the interpolant function lists self.interpolant_sector_freq = self._build_interpolant_function_list( self.x_array, self.y_array, self.n_sectors, self.sector_freq ) self.interpolant_weibull_A = self._build_interpolant_function_list( self.x_array, self.y_array, self.n_sectors, self.weibull_A ) self.interpolant_weibull_k = self._build_interpolant_function_list( self.x_array, self.y_array, self.n_sectors, self.weibull_k )
def __str__(self) -> str: """ Return a string representation of the WindRose object """ return ( f"WindResourceGrid with {self.nx} x {self.ny} grid points, " f"min x: {self.xmin}, min y: {self.ymin}, grid size: {self.grid_size}, " f"z: {self.z}, h: {self.h}, {self.n_sectors} sectors\n" f"Wind directions in file: {self._wind_directions_wrg_file}\n" f"Wind directions: {self.wind_directions}\n" f"Wind speeds: {self.wind_speeds}\n" f"ti_table: {self.ti_table}" ) def _build_interpolant_function_list(self, x, y, n_sectors, data): """ Build a list of interpolant functions for the data. It is assumed that the function should return a list of interpolant functions, length n_sectors. Args: x (np.array): The x values of the data, length nx. y (np.array): The y values of the data, length ny. n_sectors (int): The number of sectors. data (np.array): The data to interpolate, shape (nx, ny, n_sectors). Returns: list: A list of interpolant functions, length n_sectors. """ function_list = [] for sector in range(n_sectors): function_list.append( RegularGridInterpolator( (x, y), data[:, :, sector], bounds_error=False, fill_value=None, ) ) return function_list def _interpolate_data(self, x, y, interpolant_function_list): """ Interpolate the data at a given x, y location using the interpolant function list. Args: x (float): The x location to interpolate. y (float): The y location to interpolate. interpolant_function_list (list): A list of interpolant functions. Returns: list: A list of interpolated data, length n_sectors. """ # Check if x and y are within the bounds of the self.x_array and self.y_array, if # so use the nearest method, otherwise use the linear method of interpolation if ( x < self.x_array[0] or x > self.x_array[-1] or y < self.y_array[0] or y > self.y_array[-1] ): method = "nearest" else: method = "linear" result = np.zeros(self.n_sectors) for sector in range(self.n_sectors): result[sector] = interpolant_function_list[sector]((x, y), method=method) return result def _weibull_cumulative(self, x, a, k): """ Calculate the Weibull cumulative distribution function. Args: x (np.array): The wind speed values. a (np.array): The Weibull A parameter values. k (np.array): The Weibull k parameter values. Returns: np.array: The cumulative distribution function values. """ exponent = -((x / a) ** k) result = 1.0 - np.exp(exponent) # Where x is less than 0, the result should be 0 result[x < 0] = 0.0 return result # Original code from PJ Stanley # if x >= 0.0: # exponent = -(x / a) ** k # return 1.0 - np.exp(exponent) # else: # return 0.0 def _generate_wind_speed_frequencies_from_weibull(self, A, k, wind_speeds=None): """ Generate the wind speed frequencies from the Weibull parameters. Use the cumulative form of the function and calculate the probability of the wind speed in a given bin via the difference in the cumulative function at the bin edges. Args: A (np.array): The Weibull A parameter. k (np.array): The Weibull k parameter. wind_speeds (np.array): The wind speeds to calculate the frequencies for. If None, the frequencies are calculated for 0 to 25 m/s in 1 m/s increments. Default is None. Returns: np.array: The wind speed frequencies. """ if wind_speeds is None: wind_speeds = self.wind_speeds ws_steps = np.diff(wind_speeds) if not np.all(np.isclose(ws_steps, ws_steps[0])): raise ValueError("wind_speeds must be equally spaced.") else: ws_step = ws_steps[0] # Define the wind speed edges (not half-open interval in np.arange) wind_speed_edges = np.arange( wind_speeds[0] - ws_step / 2, wind_speeds[-1] + ws_step, ws_step ) # Get the cumulative distribution function at the edges cdf_edges = self._weibull_cumulative(wind_speed_edges, A, k) # The frequency is the difference in the cumulative distribution function # at the edges # NOTE: The probability mass associated to each discrete wind speed (ws) is taken as the # cumulative mass under the continuous Weibull distribution from ws - ws_step/2 to # ws + ws_step/2, where ws_step is the step between the provided wind_speeds. freq = cdf_edges[1:] - cdf_edges[:-1] # Normalize the frequency freq = freq / freq.sum() return wind_speeds, freq
[docs] def get_wind_rose_at_point(self, x, y, wind_directions=None, wind_speeds=None, ti_table=0.06): """ Get the wind rose at a given x, y location. Interpolate the parameters to the point and then generate the wind rose. Args: x (float): The x location to interpolate. y (float): The y location to interpolate. wind_directions (np.array): The wind directions to calculate the frequencies for. If None, use self.wind_directions. Default is None. wind_speeds (np.array): The wind speeds to calculate the frequencies for. If None, use self.wind_speeds. Default is None. ti_table (float): The ti_table to use in the wind rose. Default is 0.06. """ if wind_speeds is None: wind_speeds = self.wind_speeds # If wind directions is None, use the values stored if wind_directions is None: wind_directions = self.wind_directions wd_step = self.wd_step else: # Calculate wd_step for these directions wd_step = wind_directions[1] - wind_directions[0] # Get the interpolated data sector_freq = self._interpolate_data(x, y, self.interpolant_sector_freq) weibull_A = self._interpolate_data(x, y, self.interpolant_weibull_A) weibull_k = self._interpolate_data(x, y, self.interpolant_weibull_k) # Initialize the freq_table freq_table = np.zeros((self.n_sectors, len(wind_speeds))) # First fill in the rows of the table using the weibull distributions, # weighted by the sector freq for sector in range(self.n_sectors): wind_speeds, freq = self._generate_wind_speed_frequencies_from_weibull( weibull_A[sector], weibull_k[sector], wind_speeds=wind_speeds ) freq_table[sector, :] = sector_freq[sector] * freq # Normalize the table freq_table = freq_table / freq_table.sum() # First build the wind rose using the wind directions in the wrg file wind_rose = WindRose( wind_directions=self._wind_directions_wrg_file, wind_speeds=wind_speeds, freq_table=freq_table, ti_table=ti_table, compute_zero_freq_occurrence=True, ) # Now upsample or downsample the wind rose to the specified wind directions if wd_step == (self._wind_directions_wrg_file[1] - self._wind_directions_wrg_file[0]): # If the wind directions are the same, return the wind rose return wind_rose elif wd_step < (self._wind_directions_wrg_file[1] - self._wind_directions_wrg_file[0]): # If the wind directions are smaller, upsample return wind_rose.upsample(wd_step) else: # If the wind directions are larger, downsample return wind_rose.downsample(wd_step)
[docs] def set_wd_step(self, wd_step): """ Set the wind directions for the WindRoseWRG object. Args: wind_directions (np.array): The wind directions to use for the wind roses. """ self.wind_directions = np.arange(0.0, 360.0, wd_step) self.wd_step = wd_step # Update the wind roses if the layout has been set if self.layout_x is not None: self._update_wind_roses()
[docs] def set_wind_speeds(self, wind_speeds): """ Set the wind speeds for the WindRoseWRG object. Args: wind_speeds (np.array): The wind speeds to use for the wind roses. """ self.wind_speeds = wind_speeds # Update the wind roses if the layout has been set if self.layout_x is not None: self._update_wind_roses()
[docs] def set_ti_table(self, ti_table): """ Set the fixed turbulence intensity value for the WindRoseWRG object. Args: ti_table (float): The ti_table value to use in the wind roses. """ self.ti_table = ti_table # Update the wind roses if the layout has been set if self.layout_x is not None: self._update_wind_roses()
[docs] def set_layout(self, layout_x, layout_y): """ Set the layout for the WindRoseWRG object. Args: layout_x (np.array): The x coordinates of the layout. layout_y (np.array): The y coordinates of the layout. """ # Confirm that layout_x, layout_y, and wind_roses are the same length if len(layout_x) != len(layout_y): raise ValueError("layout_x and layout_y must be the same length") # If the current layout is the same as the new layout, return if self.layout_x is not None and self.layout_y is not None: if np.allclose(np.array(layout_x), self.layout_x) and np.allclose( np.array(layout_y), self.layout_y ): return # Save the layouts self.layout_x = np.array(layout_x) self.layout_y = np.array(layout_y) # Update the wind roses self._update_wind_roses()
def _update_wind_roses(self): # Initialize the list of wind roses self.wind_roses = [] # Loop through the turbines and get the wind rose at each location for i in range(len(self.layout_x)): wind_rose = self.get_wind_rose_at_point( self.layout_x[i], self.layout_y[i], wind_directions=self.wind_directions, wind_speeds=self.wind_speeds, ti_table=self.ti_table, ) self.wind_roses.append(wind_rose) # Save also the wd_flat and ws_flat from the first wind rose as this could be needed # for unpacking and non_zero_freq_mask self.wd_flat = self.wind_roses[0].wd_flat self.ws_flat = self.wind_roses[0].ws_flat self.non_zero_freq_mask = self.wind_roses[0].non_zero_freq_mask
[docs] def unpack(self): """ Implement the unpack method for WindRoseByTurbine by calling the unpack method for each of the WindRose objects in wind_roses. Mose of the variables can be passed as is but freq_table_unpack are combined and stacked along the 1th axis Returns: Tuple: Tuple containing the unpacked wind rose data. """ if self.layout_x is None: raise ValueError("WindRoseByTurbine must be initialized to a layout before unpacking") # Initialize freq_table_unpack freq_table_unpack = np.zeros((len(self.wd_flat), len(self.layout_x))) # Loop over remaining wind roses and stack freq_table_unpack for i, wind_rose in enumerate(self.wind_roses): ( wind_directions_unpack, wind_speeds_unpack, ti_table_unpack, freq_table_unpack_0, value_table_unpack, heterogeneous_inflow_config, ) = wind_rose.unpack() freq_table_unpack[:, i] = freq_table_unpack_0 return ( wind_directions_unpack, wind_speeds_unpack, ti_table_unpack, freq_table_unpack, value_table_unpack, heterogeneous_inflow_config, )
[docs] def plot_wind_roses( self, axarr=None, wd_step=None, ws_step=None, ): """ Plot the wind roses for each turbine in the WindRoseByTurbine object. Args: axarr (NDArrayAxes, optional): Array of axes to plot the wind roses on. Defaults to None. Must have length equal to the number of wind roses. wd_step (float, optional): Step size for wind direction. Defaults to None. ws_step (float, optional): Step size for wind speed. Defaults to None. """ if self.layout_x is None: raise ValueError("WindRoseByTurbine must be initialized to a layout before plotting") # If axarr is not defined, create a new figure if axarr is None: _, axarr = plt.subplots(1, len(self.wind_roses), subplot_kw={"polar": True}) # Test that axarr is the correct length if len(axarr) != len(self.wind_roses): raise ValueError("axarr must have the same length as the number of wind roses") # Plot the wind roses for each turbine for i, wind_rose in enumerate(self.wind_roses): wind_rose.plot(ax=axarr[i], wd_step=wd_step, ws_step=ws_step) axarr[i].set_title(f"Turbine {i}\n ({self.layout_x[i]:.1f}, {self.layout_y[i]:.1f})")
[docs] def get_heterogeneous_wind_rose( self, fmodel, wind_speeds=None, x_loc=None, y_loc=None, representative_wind_speed=8.0, ): """ Get the heterogeneous map at each location in the grid, with the speeds ups defined relative the location indicated by gid_norm_index. Args: fmodel (FlorisModel): The FlorisModel object to use to generate the power curve. wind_speeds (np.array): The wind speeds to calculate the frequencies for. Default is np.arange(0.0, 25.0, 1.0). gid_norm_index (int): The index of the turbine to normalize the speed ups to. Default is 0. representative_wind_speed (float): The representative wind speed to use in the power curve. Returns: HeterogeneousMap: The heterogeneous map object. """ ############################ # Compute the power curve for combining the wind speeds ############################ if wind_speeds is None: wind_speeds = self.wind_speeds # Get a local copy fm = copy.deepcopy(fmodel) # Get the power curve for the turbine # TODO: Maybe the power curve could be directly extracted fm.set( layout_x=[0], layout_y=[0], wind_data=TimeSeries( wind_speeds=wind_speeds, wind_directions=270.0, turbulence_intensities=0.06, ), ) fm.run() turbine_power = fm.get_turbine_powers().flatten() ############################ # Identify the point on the original wrg grid closest to the x_loc and y_loc ############################ if x_loc is None or y_loc is None: # Simply use the first point gid_reference = 0 else: # Find the closest point gid_reference = np.argmin((self.x_gid - x_loc) ** 2 + (self.y_gid - y_loc) ** 2) # Assign x_loc and y_loc to this point x_loc = self.x_gid[gid_reference] y_loc = self.y_gid[gid_reference] print(f"Using point {gid_reference} at ({x_loc}, {y_loc}) as reference location") ############################ # Get the wind rose at this point ############################ wind_rose = self.get_wind_rose_at_point( x=x_loc, y=y_loc, ) # Subset to the representative wind speed # Check the represenative_wind_speed is valid if representative_wind_speed in wind_rose.wind_speeds: ws_idx = np.where(wind_rose.wind_speeds == representative_wind_speed)[0] else: raise ValueError("representative_wind_speed must be in original set") # Create a new wind rose with only the specified wind speeds wind_rose = WindRose( wind_rose.wind_directions, wind_rose.wind_speeds[ws_idx], wind_rose.ti_table[:, ws_idx], wind_rose.freq_table[:, ws_idx], wind_rose.value_table[:, ws_idx] if wind_rose.value_table is not None else None, wind_rose.compute_zero_freq_occurrence, wind_rose.heterogeneous_map, ) ############################ # Calculate speed multipliers ############################ speed_multipliers = np.zeros((self.n_sectors, self.n_gid)) for direction_sector in range(self.n_sectors): for gid in range(self.n_gid): _, freq = self._generate_wind_speed_frequencies_from_weibull( self.weibull_A_gid[gid, direction_sector], self.weibull_k_gid[gid, direction_sector], wind_speeds=wind_speeds, ) # Record the expected power speed_multipliers[direction_sector, gid] = np.sum(turbine_power * freq) # Normalize the speed ups speed_multipliers[direction_sector, :] = ( speed_multipliers[direction_sector, :] / speed_multipliers[direction_sector, gid_reference] ) # Take the cube root of the speed ups to place in the frame of wind speed ups speed_multipliers = np.cbrt(speed_multipliers) # Create the heterogeneous map heterogeneous_map = HeterogeneousMap( x=self.x_gid, y=self.y_gid, wind_directions=self._wind_directions_wrg_file, speed_multipliers=speed_multipliers, ) # Return the wind rose with the heterogeneous map return WindRose( wind_directions=wind_rose.wind_directions, wind_speeds=wind_rose.wind_speeds, freq_table=wind_rose.freq_table, ti_table=wind_rose.ti_table, heterogeneous_map=heterogeneous_map, )