Source code for rex.resource_extraction.resource_extraction

# -*- coding: utf-8 -*-
"""
Resource Extraction Tools
"""
import copy
import logging
import os
import pickle
from tempfile import TemporaryDirectory
from warnings import warn

import h5py
import numpy as np
import pandas as pd
from scipy.spatial import cKDTree

from rex.multi_file_resource import (
    MultiFileNSRDB,
    MultiFileResource,
    MultiFileWTK,
)
from rex.multi_time_resource import MultiTimeResource
from rex.multi_year_resource import MultiYearResource
from rex.renewable_resource import (
    NSRDB,
    SolarResource,
    WaveResource,
    WindResource,
)
from rex.resource import Resource, ResourceDataset, BaseDatasetIterable
from rex.temporal_stats.temporal_stats import TemporalStats
from rex.utilities.exceptions import ResourceValueError, ResourceWarning
from rex.utilities.execution import SpawnProcessPool
from rex.utilities.loggers import log_versions
from rex.utilities.utilities import check_tz, parse_year, res_dist_threshold

# pylint: disable=consider-using-with
TREE_DIR = TemporaryDirectory()
logger = logging.getLogger(__name__)


[docs] class ResourceX(BaseDatasetIterable): """ Resource data extraction tool """ DEFAULT_RES_CLS = Resource def __init__(self, res_h5, res_cls=None, tree=None, unscale=True, str_decode=True, group=None, hsds=False, hsds_kwargs=None, log_vers=True): """ Parameters ---------- res_h5 : str Path to resource .h5 file of interest res_cls : obj, optional Resource class to use to open and access resource data, by default Resource (default changes for subclasses like NSRDBX) tree : str | cKDTree, optional cKDTree or path to .pkl file containing pre-computed tree of lat, lon coordinates, by default None unscale : bool, optional Boolean flag to automatically unscale variables on extraction, by default True str_decode : bool, optional Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read. by default True group : str, optional Group within .h5 resource file to open, by default None hsds : bool, optional Boolean flag to use h5pyd to handle .h5 'files' hosted on AWS behind HSDS, by default False hsds_kwargs : dict, optional Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None log_vers : bool Flag to log rex versions, True by default. Disable this if wrapping in a parallel process (logs get very verbose). """ if log_vers: log_versions(logger) res_cls = self.DEFAULT_RES_CLS if res_cls is None else res_cls self._res = res_cls(res_h5, unscale=unscale, str_decode=str_decode, group=group, hsds=hsds, hsds_kwargs=hsds_kwargs) self._dist_thresh = None self._tree = tree def __repr__(self): msg = "{} extractor for {}".format(self._res.__class__.__name__, self.resource.h5_file) return msg def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() if type is not None: raise def __len__(self): return len(self.resource) def __getitem__(self, keys): return self.resource[keys] def __contains__(self, dset): return dset in self.datasets @property def resource(self): """ Open res_cls instance to access res_h5 data Returns ------- res_cls : rex.resource.Resource | rex.renewable_resource.* """ return self._res @property def h5(self): """ Open h5py File instance. If _group is not None return open Group Returns ------- h5 : h5py.File | h5py.Group """ return self.resource.h5 @property def datasets(self): """ Datasets available Returns ------- list """ return self.resource.datasets @property def dsets(self): """ Datasets available Returns ------- list """ return self.datasets @property def resource_datasets(self): """ Available resource datasets Returns ------- list """ return self.resource.resource_datasets @property def res_dsets(self): """ Available resource datasets Returns ------- list """ return self.resource_datasets @property def groups(self): """ Groups available Returns ------- groups : list """ return self.resource.groups @property def shape(self): """ Resource shape (timesteps, sites) shape = (len(time_index), len(meta)) Returns ------- shape : tuple """ return self.resource.shape @property def meta(self): """ Resource meta data DataFrame Returns ------- meta : pandas.DataFrame """ return self.resource.meta @property def time_index(self): """ Resource DatetimeIndex Returns ------- time_index : pandas.DatetimeIndex """ return self.resource.time_index @property def coordinates(self): """ Coordinates: (lat, lon) pairs Returns ------- lat_lon : ndarray """ return self.resource.lat_lon @property def lat_lon(self): """ Extract (latitude, longitude) pairs Returns ------- lat_lon : ndarray """ return self.resource.lat_lon @property def data_version(self): """ Get the version attribute of the data. None if not available. Returns ------- version : str | None """ return self.resource.data_version @property def global_attrs(self): """ Global (file) attributes Returns ------- global_attrs : dict """ return self.resource.global_attrs @property def attrs(self): """ Global (file) attributes Returns ------- attrs : dict """ return self.resource.attrs @property def tree(self): """ Pre-initialized cKDTree on the resource lat, lon coordinates Returns ------- tree : cKDTree """ if not isinstance(self._tree, cKDTree): self._tree = self._init_tree(self._tree) return self._tree @property def distance_threshold(self): """ Distance threshold, calculated as half of the diagonal between closest resource points, with an extra 5% margin Returns ------- float """ if self._dist_thresh is None: self._dist_thresh = res_dist_threshold(self._res.lat_lon, tree=self.tree) return self._dist_thresh @property def countries(self): """ Available Countires Returns ------- countries : ndarray """ if 'country' in self.meta: countries = self.meta['country'].unique() else: countries = None return countries @property def states(self): """ Available states Returns ------- states : ndarray """ if 'state' in self.meta: states = self.meta['state'].unique() else: states = None return states @property def counties(self): """ Available Counties Returns ------- counties : ndarray """ if 'county' in self.meta: counties = self.meta['county'].unique() else: counties = None return counties @staticmethod def _get_tree_file(h5_file): """ Create path to pre-computed tree from h5_file by splitting file name at year if available, else replacing the .h5 suffix Parameters ---------- h5_file : str Path to source .h5 file Returns ------- tree_file : str Path to pre-comupted tree .pkl file name """ f_name = os.path.basename(h5_file) try: year = parse_year(f_name) tree_file = f_name.split(str(year))[0] + 'tree.pkl' except RuntimeError: tree_file = f_name.replace('.h5', '_tree.pkl') return tree_file @staticmethod def _load_tree(tree_path): """ Load tree from pickle file Parameters ---------- tree_path : str Pickle (.pkl, .pickle) file containing precomputed cKDTree Returns ------- tree : cKDTree Precomputed tree of lat, lon coordinates """ try: with open(tree_path, 'rb') as f: tree = pickle.load(f) except Exception as e: logger.warning('Could not extract tree from {}: {}' .format(tree_path, e)) tree = None return tree @staticmethod def _save_tree(tree, tree_path): """ Save pre-computed Tree to TEMP_DIR as a pickle file Parameters ---------- tree : cKDTree pre-computed cKDTree tree_path : str Path to pickle file in TEMP_DIR to save tree too """ try: with open(tree_path, 'wb') as f: pickle.dump(tree, f) except Exception as e: logger.warning('Could not save tree to {}: {}' .format(tree_path, e)) @staticmethod def _get_ds_slice(dset, gids): """ Get dataset region slice Parameters ---------- dset : str Dataset to extract region from gids : ndarray | list Gids associated with region Returns ------- ds_slice : tuple ds slice tuple to properly extract region from given dataset """ if dset == 'time_index': ds_slice = (slice(None), ) elif dset in ['coordinates', 'meta']: ds_slice = (gids, ) else: ds_slice = (slice(None), gids) return ds_slice @staticmethod def _to_SAM_csv(sam_df, site_meta, out_path, write_time=True): """ Save SAM dataframe to disk and add meta data to header to make SAM compliant Parameters ---------- sam_df : pandas.DataFrame rex SAM DataFrame site_meta : pandas.DataFrame Site meta data out_path : str Path to .csv file to save data too write_time : bool Flag to write the time columns (Year, Month, Day, Hour, Minute) """ if not out_path.endswith('.csv'): if os.path.isfile(out_path): out_path = os.path.basename(out_path) out_path = os.path.join(out_path, "{}.csv".format(sam_df.name)) if write_time: sam_df.to_csv(out_path, index=False) else: time_cols = ('year', 'month', 'day', 'hour', 'minute') cols = [c for c in sam_df if c.lower() not in time_cols] sam_df[cols].to_csv(out_path, index=False) if 'gid' not in site_meta: site_meta.index.name = 'gid' site_meta = site_meta.reset_index() col_map = {} for c in site_meta.columns: if c.lower() == 'timezone': col_map[c] = 'Time Zone' elif c.lower() == 'gid': col_map[c] = 'Location ID' elif c.islower(): col_map[c] = c.capitalize() site_meta = site_meta.rename(columns=col_map) cols = ','.join(site_meta.columns) values = site_meta.values[0].astype(str) values = ','.join([value.replace(',', '') for value in values]) values = values.replace('\n', '').replace('\r', '').replace('\t', '') with open(out_path, 'r+') as f: content = f.read() f.seek(0, 0) f.write(cols + '\n' + values + '\n' + content) def _init_tree(self, tree): """ Inititialize cKDTree of lat, lon coordinates Parameters ---------- tree : str | cKDTree | NoneType Path to .pgz file containing pre-computed tree If None search bin for .pgz file matching h5 file else compute tree Returns ------- tree : cKDTree cKDTree of lat, lon coordinate from wtk .h5 file """ tree_path = self._get_tree_file(self.resource.h5_file) if not isinstance(tree, (cKDTree, str, type(None))): tree = None logger.warning('Precomputed tree must be supplied as a pickle ' 'file or a cKDTree, not a {}' .format(type(tree))) if tree is None: if tree_path in os.listdir(TREE_DIR.name): tree = os.path.join(TREE_DIR.name, tree_path) if isinstance(tree, str): tree = self._load_tree(tree) if tree is None: lat_lon = self.lat_lon tree = cKDTree(lat_lon) # pylint: disable=not-callable self._save_tree(tree, os.path.join(TREE_DIR.name, tree_path)) return tree def _check_lat_lon(self, lat_lon): """ Check lat lon coordinates against domain Parameters ---------- lat_lon : ndarray Either a single (lat, lon) pair or series of (lat, lon) pairs """ lat_min, lat_max = np.sort(self.lat_lon[:, 0])[[0, -1]] lon_min, lon_max = np.sort(self.lat_lon[:, 1])[[0, -1]] lat = lat_lon[:, 0] check = lat < lat_min check |= lat > lat_max lon = lat_lon[:, 1] check |= lon < lon_min check |= lon > lon_max if any(check): bad_coords = lat_lon[check] msg = ("Latitude, longitude coordinates ({}) are outsides of the " "resource domain: (({}, {}), ({}, {}))" .format(bad_coords, lat_min, lon_min, lat_max, lon_max)) raise ResourceValueError(msg)
[docs] def lat_lon_gid(self, lat_lon, check_lat_lon=True): """ Get nearest gid to given (lat, lon) pair or pairs Parameters ---------- lat_lon : ndarray Either a single (lat, lon) pair or series of (lat, lon) pairs check_lat_lon : bool, optional Flag to check to make sure the requested lat lons are inside the resource grid. This is done by comparing with the bounding box of the resource coordinates and by ensuring the nearest neighbor distance are below the distance threshold to ensure that requested lat, lon coordinates are within the resource grid, by default True Returns ------- gids : int | ndarray Nearest gid(s) to given (lat, lon) pair(s) """ if not isinstance(lat_lon, np.ndarray): lat_lon = np.array(lat_lon, dtype=np.float32) if len(lat_lon.shape) == 1: lat_lon = np.expand_dims(lat_lon, axis=0) dist, gids = self.tree.query(lat_lon) if check_lat_lon: self._check_lat_lon(lat_lon) dist_check = dist > self.distance_threshold if np.any(dist_check): msg = ("Latitude, longitude coordinates ({}) do not sit within" " resource grid!".format(lat_lon[dist_check])) logger.error(msg) raise ResourceValueError(msg) if len(gids) == 1: gids = int(gids[0]) return gids
[docs] def region_gids(self, region, region_col='state'): """ Get the gids for given region Parameters ---------- region : str Region to search for region_col : str Region column to search Returns ------- gids : ndarray Vector of gids in given region """ gids = self.meta gids = gids[gids[region_col] == region].index.values return gids
[docs] def box_gids(self, lat_lon_1, lat_lon_2): """ Get gids within bounding lat_lon coordinates Parameters ---------- lat_lon_1 : list | tuple One corner of the bounding box lat_lon_2 : list | tuple The other corner of the bounding box Returns ------- gids : ndarray Gids in bounding box """ self._check_lat_lon(np.vstack((lat_lon_1, lat_lon_2))) lat_min, lat_max = sorted([lat_lon_1[0], lat_lon_2[0]]) lon_min, lon_max = sorted([lat_lon_1[1], lat_lon_2[1]]) coords = self.lat_lon gids = coords[:, 0] >= lat_min gids &= coords[:, 0] <= lat_max gids &= coords[:, 1] >= lon_min gids &= coords[:, 1] <= lon_max return np.where(gids)[0]
[docs] def timestep_idx(self, timestep): """ Get the index of the desired timestep Parameters ---------- timestep : str Timestep of interest Returns ------- ts_idx : int Time index value """ timestep = check_tz(pd.to_datetime(timestep)) idx = np.where(self.time_index == timestep)[0][0] return idx
[docs] def get_gid_ts(self, ds_name, gid): """ Extract timeseries of site(s) neareset to given lat_lon(s) Parameters ---------- ds_name : str Dataset to extract gid : int | list Resource gid(s) of interset Return ------ ts : ndarray Time-series for given site(s) and dataset """ ts = self[ds_name, :, gid] return ts
[docs] def get_gid_df(self, ds_name, gid): """ Extract timeseries of site(s) nearest to given lat_lon(s) and return as a DataFrame Parameters ---------- ds_name : str Dataset to extract gid : int | list Resource gid(s) of interset Return ------ df : pandas.DataFrame Time-series DataFrame for given site(s) and dataset """ index = pd.Index(data=self.time_index, name='time_index') if isinstance(gid, (int, np.integer)): columns = [gid] else: columns = gid df = pd.DataFrame(self[ds_name, :, gid], columns=columns, index=index) df.name = ds_name return df
[docs] def get_lat_lon_ts(self, ds_name, lat_lon, check_lat_lon=True): """ Extract timeseries of site(s) neareset to given lat_lon(s) Parameters ---------- ds_name : str Dataset to extract lat_lon : tuple | list (lat, lon) coordinate of interest or pairs of coordinates check_lat_lon : bool, optional Flag to check to make sure the requested lat lons are inside the resource grid. This is done by comparing with the bounding box of the resource coordinates and by ensuring the nearest neighbor distance are below the distance threshold to ensure that requested lat, lon coordinates are within the resource grid, by default True Return ------ ts : ndarray Time-series for given site(s) and dataset """ gid = self.lat_lon_gid(lat_lon, check_lat_lon=check_lat_lon) ts = self.get_gid_ts(ds_name, gid) return ts
[docs] def get_lat_lon_df(self, ds_name, lat_lon, check_lat_lon=True): """ Extract timeseries of site(s) nearest to given lat_lon(s) and return as a DataFrame Parameters ---------- ds_name : str Dataset to extract lat_lon : tuple (lat, lon) coordinate of interest check_lat_lon : bool, optional Flag to check to make sure the requested lat lons are inside the resource grid. This is done by comparing with the bounding box of the resource coordinates and by ensuring the nearest neighbor distance are below the distance threshold to ensure that requested lat, lon coordinates are within the resource grid, by default True Return ------ df : pandas.DataFrame Time-series DataFrame for given site(s) and dataset """ gid = self.lat_lon_gid(lat_lon, check_lat_lon=check_lat_lon) df = self.get_gid_df(ds_name, gid) return df
[docs] def get_region_ts(self, ds_name, region, region_col='state'): """ Extract timeseries of of all sites in given region Parameters ---------- ds_name : str Dataset to extract region : str Region to search for region_col : str Region column to search Return ------ region_ts : ndarray Time-series array of desired dataset for all sites in desired region """ gids = self.region_gids(region, region_col=region_col) region_ts = self.get_gid_ts(ds_name, gids) return region_ts
[docs] def get_region_df(self, ds_name, region, region_col='state'): """ Extract timeseries of of all sites in given region and return as a DataFrame Parameters ---------- ds_name : str Dataset to extract region : str Region to extract all pixels for region_col : str Region column to search Return ------ region_df : pandas.DataFrame Time-series array of desired dataset for all sites in desired region """ gids = self.region_gids(region, region_col=region_col) region_df = self.get_gid_df(ds_name, gids) return region_df
[docs] def get_box_ts(self, ds_name, lat_lon_1, lat_lon_2): """ Extract timeseries of of all sites in given bounding box Parameters ---------- ds_name : str Dataset to extract lat_lon_1 : list | tuple One corner of the bounding box lat_lon_2 : list | tuple The other corner of the bounding box Return ------ box_ts : ndarray Time-series array of desired dataset for all sites in desired bounding box """ gids = self.box_gids(lat_lon_1, lat_lon_2) box_ts = self.get_gid_ts(ds_name, gids) return box_ts
[docs] def get_box_df(self, ds_name, lat_lon_1, lat_lon_2): """ Extract timeseries of of all sites in given bounding box and return as a DataFrame Parameters ---------- ds_name : str Dataset to extract lat_lon_1 : list | tuple One corner of the bounding box lat_lon_2 : list | tuple The other corner of the bounding box Return ------ box_df : pandas.DataFrame Time-series array of desired dataset for all sites in desired bounding box """ gids = self.box_gids(lat_lon_1, lat_lon_2) box_df = self.get_gid_df(ds_name, gids) return box_df
[docs] def get_SAM_gid(self, gid, out_path=None, write_time=True, extra_meta_data=None, **kwargs): """ Extract time-series of all variables needed to run SAM for nearest site to given resource gid Parameters ---------- gid : int | list Resource gid(s) of interset out_path : str, optional Path to save SAM data to in SAM .csv format, by default None write_time : bool Flag to write the time columns (Year, Month, Day, Hour, Minute) extra_meta_data : dict, optional Dictionary that maps the names and values of extra meta info. For example, extra_meta_data={'TMY Year': '2020'} will add a column 'TMY Year' to the meta data with a value of '2020'. kwargs : dict Internal kwargs for get_SAM_df Return ------ SAM_df : pandas.DataFrame | list Time-series DataFrame for given site and dataset If multiple lat, lon pairs are given a list of DatFrames is returned """ if isinstance(gid, (int, np.integer)): gid = [gid] SAM_df = [] for res_id in gid: # pylint: disable=E1111 df = self.resource.get_SAM_df(res_id, **kwargs) SAM_df.append(df) if out_path is not None: assert out_path.endswith('.csv'), 'out_path must be .csv!' i_out_path = out_path if len(gid) > 1: tag = '_{}.csv'.format(res_id) i_out_path = i_out_path.replace('.csv', tag) site_meta = self['meta', res_id] extra_meta_data = extra_meta_data or {} for col_name, val in extra_meta_data.items(): site_meta[col_name] = val if self.data_version is not None: # pylint: disable=unsupported-assignment-operation site_meta['Version'] = self.data_version self._to_SAM_csv(df, site_meta, i_out_path, write_time=write_time) if len(SAM_df) == 1: SAM_df = SAM_df[0] return SAM_df
[docs] def get_SAM_lat_lon(self, lat_lon, check_lat_lon=True, out_path=None, **kwargs): """ Extract time-series of all variables needed to run SAM for nearest site to given lat_lon Parameters ---------- lat_lon : tuple (lat, lon) coordinate of interest check_lat_lon : bool, optional Flag to check to make sure the requested lat lons are inside the resource grid. This is done by comparing with the bounding box of the resource coordinates and by ensuring the nearest neighbor distance are below the distance threshold to ensure that requested lat, lon coordinates are within the resource grid, by default True out_path : str, optional Path to save SAM data to in SAM .csv format, by default None kwargs : dict Internal kwargs for get_SAM_df Return ------ SAM_df : pandas.DataFrame | list Time-series DataFrame for given site and dataset If multiple lat, lon pairs are given a list of DatFrames is returned """ gid = self.lat_lon_gid(lat_lon, check_lat_lon=check_lat_lon) SAM_df = self.get_SAM_gid(gid, out_path=out_path, **kwargs) return SAM_df
[docs] def get_timestep_map(self, ds_name, timestep, region=None, region_col='state', box=None): """ Extract a map of the given dataset at the given timestep for the given region if supplied Parameters ---------- ds_name : str Dataset to extract timestep : str Timestep of interest region : str, optional Region to extract all pixels for, by default None region_col : str, optional Region column to search, by default 'state' box : tuple, optional Bounding corners of box to extract pixels for Returns ------- ts_map : pandas.DataFrame DataFrame of map values """ lat_lons = self.lat_lon ts_idx = self.timestep_idx(timestep) gids = slice(None) if region is not None and box is not None: msg = 'Can only process a region OR a set of box corners!' raise RuntimeError(msg) if region is not None: gids = self.region_gids(region, region_col=region_col) lat_lons = lat_lons[gids] elif box is not None: gids = self.box_gids(*box) lat_lons = lat_lons[gids] ts_map = self[ds_name, ts_idx, gids] ts_map = pd.DataFrame({'longitude': lat_lons[:, 1], 'latitude': lat_lons[:, 0], ds_name: ts_map}) return ts_map
[docs] def get_grid_vectors(self, target, meta=None): """Get vectors representing pure horizontal/vertical movements in the meta data coordinate system. Note that this can break down if a target is requested outside of the main grid area. Parameters ---------- target : tuple Starting coordinate (latitude, longitude) in decimal degrees for the bottom left hand corner of the raster grid. meta : pd.DataFrame | None Optional meta data input with latitude, longitude fields. Default is None which extracts self.meta from the resource data. Returns ------- gid_target : np.ndarray 1D array of shape (2,) with (latitude, longitude) corresponding to the meta data grid cell closest to the requested target. vector_x : np.ndarray 1D array of shape (2,) with (delta_latitude, delta_longitude) corresponding to the vector for pure positive horizontal movement in the meta data vector_y : np.ndarray 1D array of shape (2,) with (delta_latitude, delta_longitude) corresponding to the vector for pure positive vertical movement in the meta data close : np.ndarray Meta data index values corresponding to the 3x3 box of pixels closest to gid_target. """ meta = meta if meta is not None else self.meta out_of_bounds = ((target[0] > meta['latitude']).all() | (target[0] < meta['latitude']).all() | (target[1] > meta['longitude']).all() | (target[1] < meta['longitude']).all()) if out_of_bounds: msg = ('Target {} is outside of meta data extent with latitude ' 'range {} to {} and longitude range {} to {}' .format(target, meta['latitude'].min(), meta['latitude'].max(), meta['longitude'].min(), meta['longitude'].max())) raise RuntimeError(msg) # find the actual meta data point closest to the target dist = ((meta['latitude'] - target[0])**2 + (meta['longitude'] - target[1])**2) target_loc = meta.index.values[np.argmin(dist)] gid_target = np.array([meta.at[target_loc, 'latitude'], meta.at[target_loc, 'longitude']]) # find the 3x3 box of points around the target dy = meta['latitude'] - gid_target[0] dx = meta['longitude'] - gid_target[1] dist = np.sqrt(dx**2 + dy**2) close = meta.index.values[np.argsort(dist)[:9]] # get the vectors closest to pure horizontal/vertical movement theta = np.arctan2(dy.loc[close].values, dx.loc[close].values) dx_loc = close[np.argsort(np.abs(theta))[1]] dy_loc = close[np.argmin(np.abs(theta - np.pi / 2))] # get (delta_latitude, delta_longitude) vectors # for pure horizontal/vertical movements vector_dx = np.array([dy.loc[dx_loc], dx.loc[dx_loc]]) vector_dy = np.array([dy.loc[dy_loc], dx.loc[dy_loc]]) vector_dx[1] = 1e-6 if vector_dx[1] == 0 else vector_dx[1] vector_dy[1] = 1e-6 if vector_dy[1] == 0 else vector_dy[1] return gid_target, vector_dx, vector_dy, close
@staticmethod def _order_raster_index(raster_index, meta, shape, vec_dy, lat_descending=True): """Ensure that the raster index is propertly sorted. Parameters ---------- raster_index : np.ndarray 2D array of meta data index values that form a 2D rectangular grid meta : pd.DataFrame Resource meta data with latitude and longitude columns shape : tuple Desired raster shape in format (number_rows, number_cols) vec_dy : np.ndarray 1D array that represents a (lat, lon) vector lat_descending : bool Flat to have descending latitudes (this is how the raster would appear on the map with north upwards). This option can be changed for ease of vertical chunking / indexing. Returns ------- raster_index : np.ndarray 2D array of meta data index values that form a 2D rectangular grid """ iflat = raster_index.flatten() lats_raw = meta.loc[iflat, 'latitude'].values lons_raw = meta.loc[iflat, 'longitude'].values # need to rotate the coordinates to unskew them before sorting lat/lons theta = np.arctan2(vec_dy[0], vec_dy[1]) delta = (np.pi / 2) - theta lons = lons_raw * np.cos(delta) - lats_raw * np.sin(delta) lats = lats_raw * np.cos(delta) + lons_raw * np.sin(delta) # sorting by lat/lons ensures the reshape order df = pd.DataFrame({'lats': lats, 'lons': lons}, index=iflat) df = df.sort_values(['lons', 'lats']) # you need to make sure all the lons in a column are equal otherwise # imperfect grid sorting happens lons = df['lons'].values.reshape(shape, order='F') lons[:] = lons.mean(axis=0) df['lons'] = lons.flatten(order='F') df = df.sort_values(['lons', 'lats']) iflat = df.index.values raster_index = iflat.reshape(shape, order='F') lons = df['lons'].values.reshape(shape, order='F') lats = df['lats'].values.reshape(shape, order='F') # make sure lons are ordered correctly if (np.diff(lons.mean(axis=0)) < 0).sum() > 0.5 * lons.shape[1]: raster_index = raster_index[:, ::-1] # make sure lats are ordered correctly if (np.diff(lats.mean(axis=1)) < 0).sum() > 0.5 * lats.shape[0]: raster_index = raster_index[::-1, :] if lat_descending: raster_index = raster_index[::-1] lats = lats[::-1] return raster_index @classmethod def _get_raster_index(cls, meta, gid_target, vec_dx, vec_dy, shape, lat_descending=True): """Get meta data index values that correspond to a 2D rectangular grid of the requested shape. This is a hidden compute method that can be called iteratively for adaptive sampling. Parameters ---------- meta : pd.DataFrame Resource meta data with latitude and longitude columns gid_target : tuple Actual starting coordinates corresponding to a real gid point in meta data. vector_x : np.ndarray 1D array of shape (2,) with (delta_latitude, delta_longitude) corresponding to the vector for pure positive horizontal movement in the meta data vector_y : np.ndarray 1D array of shape (2,) with (delta_latitude, delta_longitude) corresponding to the vector for pure positive vertical movement in the meta data shape : tuple Desired raster shape in format (number_rows, number_cols) lat_descending : bool Flat to have descending latitudes (this is how the raster would appear on the map with north upwards). This option can be changed for ease of vertical chunking / indexing. Returns ------- raster_index : np.ndarray 2D array of meta data index values that form a 2D rectangular grid with latitudes descending from top to bottom and longitudes ascending from left to right. start_xy : np.ndarray 1D array of shape (2,) coordinates of the starting search point point_x : np.ndarray 1D array of shape (2,) coordinates of the horizonital search point point_y : np.ndarray 1D array of shape (2,) coordinates of the vertical search point end_xy : np.ndarray 1D array of shape (2,) coordinates of the final search point """ n_vert, n_horiz = shape # Set points for origin, horizontal/verical movements, and final start_xy = copy.deepcopy(gid_target) point_x = copy.deepcopy(gid_target) point_y = copy.deepcopy(gid_target) end_xy = copy.deepcopy(gid_target) # add offsets so bounding box is between grid lines start_xy -= (0.5 * (vec_dy + vec_dx)) point_x += (n_horiz - 0.5) * vec_dx - (0.5 * vec_dy) point_y += (n_vert - 0.5) * vec_dy - (0.5 * vec_dx) end_xy += (n_vert - 0.5) * vec_dy + (n_horiz - 0.5) * vec_dx # slopes of horizontal / vertical vectors m_horiz = vec_dx[0] / vec_dx[1] m_vert = vec_dy[0] / vec_dy[1] # horizontal lines (low, high) lin_y_1 = (m_horiz * (meta['longitude'].values - start_xy[1]) + start_xy[0]) lin_y_2 = (m_horiz * (meta['longitude'].values - point_y[1]) + point_y[0]) # vertical lines (left, right) lin_x_1 = ((meta['latitude'].values - start_xy[0]) / m_vert + start_xy[1]) lin_x_2 = ((meta['latitude'].values - point_x[0]) / m_vert + point_x[1]) # get the mask of the bounding box mask = ((meta['latitude'] > lin_y_1) & (meta['latitude'] < lin_y_2) & (meta['longitude'] > lin_x_1) & (meta['longitude'] < lin_x_2)) if mask.sum() != (n_horiz * n_vert): msg = ('Found {} gids but should have found {} by {}. ' 'Gid target was {}, ' 'bounding points were calculated to be {} {} {} {},' 'and the final found coordinates are: \n{}' .format(mask.sum(), n_horiz, n_vert, gid_target, start_xy, point_x, point_y, end_xy, meta[mask])) raise RuntimeError(msg) raster_index = meta[mask].index.values raster_index = cls._order_raster_index(raster_index, meta, shape, vec_dy, lat_descending=lat_descending) return raster_index, start_xy, point_x, point_y, end_xy
[docs] def get_raster_index(self, target, shape, meta=None, max_delta=50): """Get meta data index values that correspond to a 2D rectangular grid of the requested shape starting with the target coordinate in the bottom left hand corner. Note that this can break down if a target is requested outside of the main grid area. Parameters ---------- target : tuple Starting coordinate (latitude, longitude) in decimal degrees for the bottom left hand corner of the raster grid. shape : tuple Desired raster shape in format (number_rows, number_cols) meta : pd.DataFrame | None Optional meta data input with latitude, longitude fields. Default is None which extracts self.meta from the resource data. max_delta : int Optional maximum limit on the raster shape that is retrieved at once. If shape is (20, 20) and max_delta=10, the full raseter will be retrieved in four chunks of (10, 10). This helps adapt to non-regular grids that curve over large distances. Returns ------- raster_index : np.ndarray 2D array of meta data index values that form a 2D rectangular grid with latitudes descending from top to bottom and longitudes ascending from left to right. """ meta = meta if meta is not None else self.meta raster_index = np.zeros(shape, dtype=int) next_target = None gid_target = self.get_grid_vectors(target, meta=meta)[0] # chunk the row (i) and columns (j) rasters i_split = int(np.ceil(shape[0] / max_delta)) j_split = int(np.ceil(shape[1] / max_delta)) i_chunks = np.array_split(np.arange(shape[0]), i_split) j_chunks = np.array_split(np.arange(shape[1]), j_split) for ii, i_chunk in enumerate(i_chunks): i_slice = slice(i_chunk[0], i_chunk[-1] + 1) logger.info('Working on row chunk {} out of {}' .format(ii + 1, len(i_chunks))) for jj, j_chunk in enumerate(j_chunks): logger.debug('Working on column chunk {} out of {}' .format(jj + 1, len(j_chunks))) j_slice = slice(j_chunk[0], j_chunk[-1] + 1) temp_shape = (len(i_chunk), len(j_chunk)) # get the grid vectors using the gid_target from the # previous raster chunk gid_target, vec_dx, vec_dy, _ = self.get_grid_vectors( gid_target, meta=meta) # get the raster using the current grid vectors temp, _, point_x, point_y, _ = self._get_raster_index( meta, gid_target, vec_dx, vec_dy, temp_shape, lat_descending=False) raster_index[i_slice, j_slice] = temp gid_target = point_x + (0.5 * (vec_dx + vec_dy)) if jj == 0: # save the gid_target for the next row next_target = point_y + (0.5 * (vec_dx + vec_dy)) elif jj == len(j_chunks) - 1: # use the saved gid_target for the next row gid_target = next_target raster_index = raster_index[::-1] return raster_index
[docs] @classmethod def make_SAM_files(cls, res_h5, gids, out_path, write_time=True, extra_meta_data=None, max_workers=1, n_chunks=36, **kwargs): """A performant parallel entry point for making many SAM csv files for many gids Parameters ---------- res_h5 : str Filepath to resource h5 file. gids : list | tuple | np.ndarray Resource gid(s) of interset out_path : str, optional Path to save SAM data to in SAM .csv format. A gid index "*_{gid}.csv" will be appended to the file path write_time : bool Flag to write the time columns (Year, Month, Day, Hour, Minute) extra_meta_data : dict, optional Dictionary that maps the names and values of extra meta info. For example, extra_meta_data={'TMY Year': '2020'} will add a column 'TMY Year' to the meta data with a value of '2020'. max_workers : int | None Number of parallel workers. None for all workers. n_chunks : int Number of chunks to split gids into for parallelization kwargs : dict Internal kwargs for get_SAM_df """ if max_workers == 1: with cls(res_h5) as res: res.get_SAM_gid(gids, out_path=out_path, write_time=write_time, extra_meta_data=extra_meta_data, **kwargs) else: msg = 'Bad gids dtype: {}'.format(type(gids)) assert isinstance(gids, (list, tuple, np.ndarray)), msg gid_chunks = np.array_split(np.array(gids), n_chunks) with SpawnProcessPool(max_workers=max_workers) as spp: for chunk in gid_chunks: spp.submit(cls.make_SAM_files, res_h5, chunk, out_path, write_time=write_time, extra_meta_data=extra_meta_data, max_workers=1, **kwargs)
[docs] def close(self): """ Close res_cls instance """ self._res.close()
def _get_datasets(self, datasets=None): """ Get datasets to extract, if None extract all datasets Parameters ---------- datasets : list | str, optional Dataset(s) to extract, by default None Returns ------- datasets : list Unique set of datasets in alphabetical order """ if datasets is None: datasets = self.datasets else: if isinstance(datasets, str): datasets = [datasets] else: datasets = datasets.copy() datasets += ['meta', 'time_index', 'coordinates'] return sorted(set(datasets))
[docs] def save_subset(self, out_fpath, gids, datasets=None): """ Extract desired datasets for given gids and save to a new out_fpath .h5 file Parameters ---------- out_fpath : str Path to .h5 file to save region datasets to gids : list List of gids to extract data from and save to .h5 datasets : str | list, optional Dataset(s) to extract from given region and save to out_fpath, if None extract all datasets, by default None """ scale_attr = self.resource.SCALE_ATTR add_attr = self.resource.ADD_ATTR unscale = False datasets = self._get_datasets(datasets=datasets) with h5py.File(out_fpath, mode='w-') as f_out: for k, v in self.global_attrs.items(): try: f_out.attrs[k] = v except Exception as ex: msg = ('Could not transfer global attribute {}: {}\n{}' .format(k, v, ex)) warn(msg) for dset in datasets: if dset in self: ds = self.h5[dset] ds_slice = self._get_ds_slice(dset, gids) data = ResourceDataset.extract(ds, ds_slice, scale_attr=scale_attr, add_attr=add_attr, unscale=unscale) ds_out = f_out.create_dataset(dset, shape=data.shape, dtype=data.dtype, data=data) for k, v in ds.attrs.items(): try: ds_out.attrs[k] = v except Exception as ex: msg = ('Could not transfer {} attribute {}: {}\n{}' .format(dset, k, v, ex)) warn(msg) else: msg = ("Dataset {} is not available in {} and will " "not be saved to {}".format(dset, self, out_fpath)) warn(msg, ResourceWarning)
[docs] def save_region(self, out_fpath, region, datasets=None, region_col='state'): """ Extract desired datasets from desired region and save to a new out_fpath .h5 file Parameters ---------- out_fpath : str Path to .h5 file to save region datasets to region : str, optional Region to extract all pixels for, by default None datasets : str | list, optional Dataset(s) to extract from given region and save to out_fpath, if None extract all datasets, by default None region_col : str, optional Region column to search, by default 'state' """ gids = self.region_gids(region, region_col=region_col) self.save_subset(out_fpath, gids, datasets=datasets)
[docs] class MultiFileResourceX(ResourceX): """ Multi-File resource extraction class """ DEFAULT_RES_CLS = MultiFileResource def __init__(self, resource_path, res_cls=None, tree=None, unscale=True, str_decode=True, check_files=False): """ Parameters ---------- resource_path : str Unix shell style pattern path with * wildcards to multi-file resource file sets. Files must have the same time index and coordinates but can have different datasets. res_cls : obj Resource class to use to open and access resource data tree : str | cKDTree cKDTree or path to .pkl file containing pre-computed tree of lat, lon coordinates unscale : bool Boolean flag to automatically unscale variables on extraction str_decode : bool Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read. check_files : bool Check to ensure files have the same coordinates and time_index """ log_versions(logger) res_cls = self.DEFAULT_RES_CLS if res_cls is None else res_cls self._res = res_cls(resource_path, unscale=unscale, str_decode=str_decode, check_files=check_files) self._dist_thresh = None self._tree = tree
[docs] class MultiYearResourceX(ResourceX): """ Multi Year resource extraction class """ DEFAULT_RES_CLS = Resource def __init__(self, resource_path, years=None, tree=None, unscale=True, str_decode=True, res_cls=None, hsds=False, hsds_kwargs=None): """ Parameters ---------- resource_path : str Unix shell style pattern path with * wildcards to multi-file resource file sets. Files must have the same time index and coordinates but can have different datasets. years : list, optional List of years to access, by default None tree : str | cKDTree cKDTree or path to .pkl file containing pre-computed tree of lat, lon coordinates unscale : bool Boolean flag to automatically unscale variables on extraction str_decode : bool Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read. res_cls : obj Resource handler to use to open individual .h5 files hsds : bool, optional Boolean flag to use h5pyd to handle .h5 'files' hosted on AWS behind HSDS, by default False hsds_kwargs : dict, optional Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None """ log_versions(logger) res_cls = self.DEFAULT_RES_CLS if res_cls is None else res_cls self._res = MultiYearResource(resource_path, years=years, unscale=unscale, str_decode=str_decode, res_cls=res_cls, hsds=hsds, hsds_kwargs=hsds_kwargs) self._dist_thresh = None self._tree = tree
[docs] def get_means_map(self, ds_name, year=None, region=None, region_col='state', max_workers=None, chunks_per_worker=5): """ Extract given year(s) and compute means Parameters ---------- ds_name : str Dataset to extract year : str | list, optional Year(s) to compute means for, by default None region : str Region to extract all pixels for region_col : str Region column to search max_workers : None | int, optional Number of workers to use, if 1 run in serial, if None use all available cores, by default None chunks_per_slice : int, optional Number of chunks to extract on each worker, by default 5 Returns ------- ts_map : pandas.DataFrame DataFrame of map values """ gids = slice(None) if region is not None: gids = self.region_gids(region, region_col=region_col) if year is None: year = slice(None) means_map = TemporalStats.run(self.resource.h5_file, ds_name, sites=gids, statistics='mean', res_cls=self.resource.__class__, hsds=self.resource.hsds, max_workers=max_workers, chunks_per_worker=chunks_per_worker, lat_lon_only=True) return means_map
[docs] class MultiTimeResourceX(ResourceX): """ Resource extraction class for data stored temporaly accross multiple files """ def __init__(self, resource_path, tree=None, unscale=True, str_decode=True, res_cls=None, hsds=False, hsds_kwargs=None): """ Parameters ---------- resource_path : str Unix shell style pattern path with * wildcards to multi-file resource file sets. Files must have the same time index and coordinates but can have different datasets. tree : str | cKDTree cKDTree or path to .pkl file containing pre-computed tree of lat, lon coordinates unscale : bool Boolean flag to automatically unscale variables on extraction str_decode : bool Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read. res_cls : obj Resource handler to us to open individual .h5 files hsds : bool, optional Boolean flag to use h5pyd to handle .h5 'files' hosted on AWS behind HSDS, by default False hsds_kwargs : dict, optional Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None """ log_versions(logger) res_cls = self.DEFAULT_RES_CLS if res_cls is None else res_cls self._res = MultiTimeResource(resource_path, unscale=unscale, str_decode=str_decode, res_cls=res_cls, hsds=hsds, hsds_kwargs=hsds_kwargs) self._dist_thresh = None self._tree = tree
[docs] class SolarX(ResourceX): """ Solar Resource extraction class """ DEFAULT_RES_CLS = SolarResource
[docs] class NSRDBX(ResourceX): """ NSRDB extraction class """ DEFAULT_RES_CLS = NSRDB
[docs] class MultiFileNSRDBX(MultiFileResourceX): """ Multi-File NSRDB extraction class """ DEFAULT_RES_CLS = MultiFileNSRDB
[docs] class MultiYearNSRDBX(MultiYearResourceX): """ Multi Year NSRDB extraction class """ DEFAULT_RES_CLS = NSRDB
[docs] class MultiTimeNSRDBX(MultiTimeResourceX): """ NSRDB extraction class for data stored temporaly accross multiple files """ DEFAULT_RES_CLS = NSRDB
[docs] class WindX(ResourceX): """ Wind Resource extraction class """ DEFAULT_RES_CLS = WindResource
[docs] def get_SAM_gid(self, hub_height, gid, out_path=None, write_time=True, extra_meta_data=None, **kwargs): """ Extract time-series of all variables needed to run SAM for nearest site to given resource gid and hub height Parameters ---------- hub_height : int Hub height of interest gid : int | list Resource gid(s) of interset out_path : str, optional Path to save SAM data to in SAM .csv format, by default None write_time : bool Flag to write the time columns (Year, Month, Day, Hour, Minute) extra_meta_data : dict, optional Dictionary that maps the names and values of extra meta info. For example, extra_meta_data={'TMY Year': '2020'} will add a column 'TMY Year' to the meta data with a value of '2020'. kwargs : dict Internal kwargs for get_SAM_df: - require_wind_dir - icing Return ------ SAM_df : pandas.DataFrame | list Time-series DataFrame for given site and dataset If multiple lat, lon pairs are given a list of DatFrames is returned """ kwargs['height'] = hub_height if out_path is not None: write_time = False kwargs.update({'add_header': True}) SAM_df = super().get_SAM_gid(gid, out_path=out_path, write_time=write_time, extra_meta_data=extra_meta_data, **kwargs) return SAM_df
[docs] def get_SAM_lat_lon(self, hub_height, lat_lon, check_lat_lon=True, out_path=None, **kwargs): """ Extract time-series of all variables needed to run SAM for nearest site to given lat_lon and hub height Parameters ---------- hub_height : int Hub height of interest lat_lon : tuple (lat, lon) coordinate of interest check_lat_lon : bool, optional Flag to check to make sure the requested lat lons are inside the resource grid. This is done by comparing with the bounding box of the resource coordinates and by ensuring the nearest neighbor distance are below the distance threshold to ensure that requested lat, lon coordinates are within the resource grid, by default True out_path : str, optional Path to save SAM data to in SAM .csv format, by default None kwargs : dict Internal kwargs for get_SAM_df: - require_wind_dir - icing Return ------ SAM_df : pandas.DataFrame | list Time-series DataFrame for given site and dataset If multiple lat, lon pairs are given a list of DatFrames is returned """ gid = self.lat_lon_gid(lat_lon, check_lat_lon=check_lat_lon) SAM_df = self.get_SAM_gid(hub_height, gid, out_path=out_path, **kwargs) return SAM_df
[docs] @classmethod def make_SAM_files(cls, hub_height, res_h5, gids, out_path, write_time=True, extra_meta_data=None, max_workers=1, n_chunks=36, **kwargs): """A performant parallel entry point for making many SAM csv files for many gids Parameters ---------- hub_height : int Hub height of interest res_h5 : str Filepath to resource h5 file. gids : list | tuple | np.ndarray Resource gid(s) of interset out_path : str, optional Path to save SAM data to in SAM .csv format. A gid index "*_{gid}.csv" will be appended to the file path write_time : bool Flag to write the time columns (Year, Month, Day, Hour, Minute) extra_meta_data : dict, optional Dictionary that maps the names and values of extra meta info. For example, extra_meta_data={'TMY Year': '2020'} will add a column 'TMY Year' to the meta data with a value of '2020'. max_workers : int | None Number of parallel workers. None for all workers. n_chunks : int Number of chunks to split gids into for parallelization kwargs : dict Internal kwargs for get_SAM_df """ kwargs['height'] = hub_height super().get_SAM_gid(res_h5, gids, out_path, write_time=write_time, extra_meta_data=extra_meta_data, max_workers=max_workers, n_chunks=n_chunks, **kwargs)
[docs] class MultiFileWindX(MultiFileResourceX): """ Multi-File Wind Resource extraction class """ DEFAULT_RES_CLS = MultiFileWTK
[docs] class MultiYearWindX(MultiYearResourceX): """ Multi Year Wind Resource extraction class """ DEFAULT_RES_CLS = WindResource
[docs] class MultiTimeWindX(MultiTimeResourceX): """ Wind resource extraction class for data stored temporaly accross multiple files """ DEFAULT_RES_CLS = WindResource
[docs] class WaveX(ResourceX): """ Wave data extraction class """ DEFAULT_RES_CLS = WaveResource
[docs] def get_gid_ts(self, ds_name, gid): """ Extract timeseries of site(s) neareset to given lat_lon(s) Parameters ---------- ds_name : str Dataset to extract gid : int | list Resource gid(s) of interset Return ------ ts : ndarray Time-series for given site(s) and dataset """ if ds_name == 'directional_wave_spectrum': ts = self[ds_name, :, :, :, gid] else: ts = self[ds_name, :, gid] return ts
[docs] def get_gid_df(self, ds_name, gid): """ Extract timeseries of site(s) nearest to given lat_lon(s) and return as a DataFrame Parameters ---------- ds_name : str Dataset to extract gid : int | list Resource gid(s) of interset Return ------ df : pandas.DataFrame Time-series DataFrame for given site(s) and dataset """ if ds_name == 'directional_wave_spectrum': df = self[ds_name, :, :, :, gid] index = pd.MultiIndex.from_product( [self.time_index, self['frequency'], self['direction']], names=['time_index', 'frequency', 'direction']) ax1 = np.prod(df.shape[:3]) ax2 = df.shape[-1] if len(df.shape) == 4 else 1 df = df.reshape(ax1, ax2) else: df = self[ds_name, :, gid] index = pd.Index(data=self.time_index, name='time_index') if isinstance(gid, (int, np.integer)): df = pd.DataFrame(df, columns=[gid], index=index) df.name = gid else: df = pd.DataFrame(df, columns=gid, index=index) df.name = ds_name return df
[docs] class MultiYearWaveX(MultiYearResourceX): """ Multi Year Wave extraction class """ DEFAULT_RES_CLS = WaveResource
[docs] class MultiTimeWaveX(MultiTimeResourceX): """ Wave resource extraction class for data stored temporaly accross multiple files """ DEFAULT_RES_CLS = WaveResource