rex.resource.Resource

class Resource(h5_file, unscale=True, str_decode=True, group=None, hsds=False, hsds_kwargs=None)[source]

Bases: BaseResource

Base class to handle resource .h5 files

Examples

Extracting the resource’s Datetime Index

>>> file = '$TESTDATADIR/nsrdb/ri_100_nsrdb_2012.h5'
>>> with Resource(file) as res:
>>>     ti = res.time_index
>>>
>>> ti
DatetimeIndex(['2012-01-01 00:00:00', '2012-01-01 00:30:00',
               '2012-01-01 01:00:00', '2012-01-01 01:30:00',
               '2012-01-01 02:00:00', '2012-01-01 02:30:00',
               '2012-01-01 03:00:00', '2012-01-01 03:30:00',
               '2012-01-01 04:00:00', '2012-01-01 04:30:00',
               ...
               '2012-12-31 19:00:00', '2012-12-31 19:30:00',
               '2012-12-31 20:00:00', '2012-12-31 20:30:00',
               '2012-12-31 21:00:00', '2012-12-31 21:30:00',
               '2012-12-31 22:00:00', '2012-12-31 22:30:00',
               '2012-12-31 23:00:00', '2012-12-31 23:30:00'],
              dtype='datetime64[ns]', length=17568, freq=None)

Efficient slicing of the Datetime Index

>>> with Resource(file) as res:
>>>     ti = res['time_index', 1]
>>>
>>> ti
2012-01-01 00:30:00
>>> with Resource(file) as res:
>>>     ti = res['time_index', :10]
>>>
>>> ti
DatetimeIndex(['2012-01-01 00:00:00', '2012-01-01 00:30:00',
               '2012-01-01 01:00:00', '2012-01-01 01:30:00',
               '2012-01-01 02:00:00', '2012-01-01 02:30:00',
               '2012-01-01 03:00:00', '2012-01-01 03:30:00',
               '2012-01-01 04:00:00', '2012-01-01 04:30:00'],
              dtype='datetime64[ns]', freq=None)
>>> with Resource(file) as res:
>>>     ti = res['time_index', [1, 2, 4, 8, 9]
>>>
>>> ti
DatetimeIndex(['2012-01-01 00:30:00', '2012-01-01 01:00:00',
               '2012-01-01 02:00:00', '2012-01-01 04:00:00',
               '2012-01-01 04:30:00'],
              dtype='datetime64[ns]', freq=None)

Extracting resource’s site metadata

>>> with Resource(file) as res:
>>>     meta = res.meta
>>>
>>> meta
        latitude  longitude   elevation  timezone    country ...
0      41.29     -71.86    0.000000        -5           None ...
1      41.29     -71.82    0.000000        -5           None ...
2      41.25     -71.82    0.000000        -5           None ...
3      41.33     -71.82   15.263158        -5  United States ...
4      41.37     -71.82   25.360000        -5  United States ...
..       ...        ...         ...       ...            ... ...
95     41.25     -71.66    0.000000        -5           None ...
96     41.89     -71.66  153.720000        -5  United States ...
97     41.45     -71.66   35.440000        -5  United States ...
98     41.61     -71.66  140.200000        -5  United States ...
99     41.41     -71.66   35.160000        -5  United States ...
[100 rows x 10 columns]

Efficient slicing of the metadata

>>> with Resource(file) as res:
>>>     meta = res['meta', 1]
>>>
>>> meta
   latitude  longitude  elevation  timezone country state county urban ...
1     41.29     -71.82        0.0        -5    None  None   None  None ...
>>> with Resource(file) as res:
>>>     meta = res['meta', :5]
>>>
>>> meta
   latitude  longitude  elevation  timezone        country ...
0     41.29     -71.86   0.000000        -5           None ...
1     41.29     -71.82   0.000000        -5           None ...
2     41.25     -71.82   0.000000        -5           None ...
3     41.33     -71.82  15.263158        -5  United States ...
4     41.37     -71.82  25.360000        -5  United States ...
>>> with Resource(file) as res:
>>>     tz = res['meta', :, 'timezone']
>>>
>>> tz
0    -5
1    -5
2    -5
3    -5
4    -5
     ..
95   -5
96   -5
97   -5
98   -5
99   -5
Name: timezone, Length: 100, dtype: int64
>>> with Resource(file) as res:
>>>     lat_lon = res['meta', :, ['latitude', 'longitude']]
>>>
>>> lat_lon
    latitude  longitude
0      41.29     -71.86
1      41.29     -71.82
2      41.25     -71.82
3      41.33     -71.82
4      41.37     -71.82
..       ...        ...
95     41.25     -71.66
96     41.89     -71.66
97     41.45     -71.66
98     41.61     -71.66
99     41.41     -71.66
[100 rows x 2 columns]

Extracting resource variables (datasets)

>>> with Resource(file) as res:
>>>     wspd = res['wind_speed']
>>>
>>> wspd
[[12. 12. 12. ... 12. 12. 12.]
 [12. 12. 12. ... 12. 12. 12.]
 [12. 12. 12. ... 12. 12. 12.]
 ...
 [14. 14. 14. ... 14. 14. 14.]
 [15. 15. 15. ... 15. 15. 15.]
 [15. 15. 15. ... 15. 15. 15.]]

Efficient slicing of variables

>>> with Resource(file) as res:
>>>     wspd = res['wind_speed', :2]
>>>
>>> wspd
[[12. 12. 12. 12. 12. 12. 53. 53. 53. 53. 53. 12. 53.  1.  1. 12. 12. 12.
   1.  1. 12. 53. 53. 53. 12. 12. 12. 12. 12.  1. 12. 12.  1. 12. 12. 53.
  12. 53.  1. 12.  1. 53. 53. 12. 12. 12. 12.  1.  1.  1. 12. 12.  1.  1.
  12. 12. 53. 53. 53. 12. 12. 53. 53. 12. 12. 12. 12. 12. 12.  1. 53.  1.
  53. 12. 12. 53. 53.  1.  1.  1. 53. 12.  1.  1. 53. 53. 53. 12. 12. 12.
  12. 12. 12. 12.  1. 12.  1. 12. 12. 12.]
 [12. 12. 12. 12. 12. 12. 53. 53. 53. 53. 53. 12. 53.  1.  1. 12. 12. 12.
   1.  1. 12. 53. 53. 53. 12. 12. 12. 12. 12.  1. 12. 12.  1. 12. 12. 53.
  12. 53.  1. 12.  1. 53. 53. 12. 12. 12. 12.  1.  1.  1. 12. 12.  1.  1.
  12. 12. 53. 53. 53. 12. 12. 53. 53. 12. 12. 12. 12. 12. 12.  1. 53.  1.
  53. 12. 12. 53. 53.  1.  1.  1. 53. 12.  1.  1. 53. 53. 53. 12. 12. 12.
  12. 12. 12. 12.  1. 12.  1. 12. 12. 12.]]
>>> with Resource(file) as res:
>>>     wspd = res['wind_speed', :, [2, 3]]
>>>
>>> wspd
[[12. 12.]
 [12. 12.]
 [12. 12.]
 ...
 [14. 14.]
 [15. 15.]
 [15. 15.]]
Parameters:
  • h5_file (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)

  • unscale (bool, optional) – Boolean flag to automatically unscale variables on extraction, by default True

  • str_decode (bool, optional) – Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read, by default True

  • group (str, optional) – Group within .h5 resource file to open, by default None

  • hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default

  • hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None

Methods

close()

Close h5 instance

df_str_decode(df)

Decode a dataframe with byte string columns into ordinary str cols.

get_SAM_df(site)

Placeholder for get_SAM_df method that it resource specific

get_attrs([dset])

Get h5 attributes either from file or dataset

get_dset_properties(dset)

Get dataset properties (shape, dtype, chunks)

get_meta_arr(rec_name[, rows])

Get a meta array by name (faster than DataFrame extraction).

get_scale_factor(dset)

Get dataset scale factor

get_units(dset)

Get dataset units

is_hsds_file(file_path)

Parse one or more filepath to determine if it is hsds

is_s3_file(file_path)

Parse one or more filepath to determine if it is s3

open_dataset(ds_name)

Open resource dataset

open_file(file_path[, mode, hsds, hsds_kwargs])

Open a filepath to an h5, s3, or hsds nrel resource file with the appropriate python object.

preload_SAM(h5_file, sites, tech[, unscale, ...])

Pre-load project_points for SAM

Attributes

ADD_ATTR

SCALE_ATTR

UNIT_ATTR

adders

Dictionary of all dataset add offset factors

attrs

Dictionary of all dataset attributes

chunks

Dictionary of all dataset chunk sizes

coordinates

(lat, lon) pairs

data_version

Get the version attribute of the data.

datasets

Datasets available

dsets

Datasets available

dtypes

Dictionary of all dataset dtypes

global_attrs

Global (file) attributes

groups

Groups available

h5

Open h5py File instance.

lat_lon

Extract (latitude, longitude) pairs

meta

Resource meta data DataFrame

res_dsets

Available resource datasets

resource_datasets

Available resource datasets

scale_factors

Dictionary of all dataset scale factors

shape

Resource shape (timesteps, sites) shape = (len(time_index), len(meta))

shapes

Dictionary of all dataset shapes

time_index

Resource DatetimeIndex

units

Dictionary of all dataset units

property adders

Dictionary of all dataset add offset factors

Returns:

adders (dict)

property attrs

Dictionary of all dataset attributes

Returns:

attrs (dict)

property chunks

Dictionary of all dataset chunk sizes

Returns:

chunks (dict)

close()

Close h5 instance

property coordinates

(lat, lon) pairs

Returns:

lat_lon (ndarray)

Type:

Coordinates

property data_version

Get the version attribute of the data. None if not available.

Returns:

version (str | None)

property datasets

Datasets available

Returns:

list

static df_str_decode(df)

Decode a dataframe with byte string columns into ordinary str cols.

Parameters:

df (pd.DataFrame) – Dataframe with some columns being byte strings.

Returns:

df (pd.DataFrame) – DataFrame with str columns instead of byte str columns.

property dsets

Datasets available

Returns:

list

property dtypes

Dictionary of all dataset dtypes

Returns:

dtypes (dict)

get_SAM_df(site)

Placeholder for get_SAM_df method that it resource specific

Parameters:

site (int) – Site to extract SAM DataFrame for

get_attrs(dset=None)

Get h5 attributes either from file or dataset

Parameters:

dset (str) – Dataset to get attributes for, if None get file (global) attributes

Returns:

attrs (dict) – Dataset or file attributes

get_dset_properties(dset)

Get dataset properties (shape, dtype, chunks)

Parameters:

dset (str) – Dataset to get scale factor for

Returns:

  • shape (tuple) – Dataset array shape

  • dtype (str) – Dataset array dtype

  • chunks (tuple) – Dataset chunk size

get_meta_arr(rec_name, rows=slice(None, None, None))

Get a meta array by name (faster than DataFrame extraction).

Parameters:
  • rec_name (str) – Named record from the meta data to retrieve.

  • rows (slice) – Rows of the record to extract.

Returns:

meta_arr (np.ndarray) – Extracted array from the meta data record name.

get_scale_factor(dset)

Get dataset scale factor

Parameters:

dset (str) – Dataset to get scale factor for

Returns:

float – Dataset scale factor, used to unscale int values to floats

get_units(dset)

Get dataset units

Parameters:

dset (str) – Dataset to get units for

Returns:

str – Dataset units, None if not defined

property global_attrs

Global (file) attributes

Returns:

global_attrs (dict)

property groups

Groups available

Returns:

groups (list) – List of groups

property h5

Open h5py File instance. If _group is not None return open Group

Returns:

h5 (h5py.File | h5py.Group)

static is_hsds_file(file_path)

Parse one or more filepath to determine if it is hsds

Parameters:

file_path (str | list) – One or more file paths (only the first is parsed if multiple)

Returns:

is_hsds_file (bool) – True if hsds

static is_s3_file(file_path)

Parse one or more filepath to determine if it is s3

Parameters:

file_path (str | list) – One or more file paths (only the first is parsed if multiple)

Returns:

is_s3_file (bool) – True if s3

property lat_lon

Extract (latitude, longitude) pairs

Returns:

lat_lon (ndarray)

property meta

Resource meta data DataFrame

Returns:

meta (pandas.DataFrame)

open_dataset(ds_name)

Open resource dataset

Parameters:

ds_name (str) – Dataset name to open

Returns:

ds (ResourceDataset) – Resource for open resource dataset

classmethod open_file(file_path, mode='r', hsds=False, hsds_kwargs=None)

Open a filepath to an h5, s3, or hsds nrel resource file with the appropriate python object.

Parameters:
  • file_path (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)

  • mode (str, optional) – Mode to instantiate h5py.File instance, by default ‘r’

  • hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default

  • hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None

Returns:

file (h5py.File | h5pyd.File) – H5 file handler either opening the local file using h5py, or the file on s3 using h5py and fsspec, or the file on HSDS using h5pyd.

classmethod preload_SAM(h5_file, sites, tech, unscale=True, str_decode=True, group=None, hsds=False, hsds_kwargs=None, time_index_step=None, means=False)

Pre-load project_points for SAM

Parameters:
  • h5_file (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)

  • sites (list) – List of sites to be provided to SAM (sites is synonymous with gids aka spatial indices)

  • tech (str) – Technology to be run by SAM

  • unscale (bool) – Boolean flag to automatically unscale variables on extraction

  • str_decode (bool) – Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read.

  • group (str) – Group within .h5 resource file to open

  • hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default

  • hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None

  • time_index_step (int, optional) – Step size for time_index, used to reduce temporal resolution, by default None

  • means (bool, optional) – Boolean flag to compute mean resource when res_array is set, by default False

Returns:

SAM_res (SAMResource) – Instance of SAMResource pre-loaded with Solar resource for sites in project_points

property res_dsets

Available resource datasets

Returns:

list

property resource_datasets

Available resource datasets

Returns:

list

property scale_factors

Dictionary of all dataset scale factors

Returns:

scale_factors (dict)

property shape

Resource shape (timesteps, sites) shape = (len(time_index), len(meta))

Returns:

shape (tuple)

property shapes

Dictionary of all dataset shapes

Returns:

shapes (dict)

property time_index

Resource DatetimeIndex

Returns:

time_index (pandas.DatetimeIndex)

property units

Dictionary of all dataset units

Returns:

units (dict)