rex.resource.Resource
- class Resource(h5_file, unscale=True, str_decode=True, group=None, hsds=False, hsds_kwargs=None)[source]
Bases:
BaseResource
Base class to handle resource .h5 files
Examples
Extracting the resource’s Datetime Index
>>> file = '$TESTDATADIR/nsrdb/ri_100_nsrdb_2012.h5' >>> with Resource(file) as res: >>> ti = res.time_index >>> >>> ti DatetimeIndex(['2012-01-01 00:00:00', '2012-01-01 00:30:00', '2012-01-01 01:00:00', '2012-01-01 01:30:00', '2012-01-01 02:00:00', '2012-01-01 02:30:00', '2012-01-01 03:00:00', '2012-01-01 03:30:00', '2012-01-01 04:00:00', '2012-01-01 04:30:00', ... '2012-12-31 19:00:00', '2012-12-31 19:30:00', '2012-12-31 20:00:00', '2012-12-31 20:30:00', '2012-12-31 21:00:00', '2012-12-31 21:30:00', '2012-12-31 22:00:00', '2012-12-31 22:30:00', '2012-12-31 23:00:00', '2012-12-31 23:30:00'], dtype='datetime64[ns]', length=17568, freq=None)
Efficient slicing of the Datetime Index
>>> with Resource(file) as res: >>> ti = res['time_index', 1] >>> >>> ti 2012-01-01 00:30:00
>>> with Resource(file) as res: >>> ti = res['time_index', :10] >>> >>> ti DatetimeIndex(['2012-01-01 00:00:00', '2012-01-01 00:30:00', '2012-01-01 01:00:00', '2012-01-01 01:30:00', '2012-01-01 02:00:00', '2012-01-01 02:30:00', '2012-01-01 03:00:00', '2012-01-01 03:30:00', '2012-01-01 04:00:00', '2012-01-01 04:30:00'], dtype='datetime64[ns]', freq=None)
>>> with Resource(file) as res: >>> ti = res['time_index', [1, 2, 4, 8, 9] >>> >>> ti DatetimeIndex(['2012-01-01 00:30:00', '2012-01-01 01:00:00', '2012-01-01 02:00:00', '2012-01-01 04:00:00', '2012-01-01 04:30:00'], dtype='datetime64[ns]', freq=None)
Extracting resource’s site metadata
>>> with Resource(file) as res: >>> meta = res.meta >>> >>> meta latitude longitude elevation timezone country ... 0 41.29 -71.86 0.000000 -5 None ... 1 41.29 -71.82 0.000000 -5 None ... 2 41.25 -71.82 0.000000 -5 None ... 3 41.33 -71.82 15.263158 -5 United States ... 4 41.37 -71.82 25.360000 -5 United States ... .. ... ... ... ... ... ... 95 41.25 -71.66 0.000000 -5 None ... 96 41.89 -71.66 153.720000 -5 United States ... 97 41.45 -71.66 35.440000 -5 United States ... 98 41.61 -71.66 140.200000 -5 United States ... 99 41.41 -71.66 35.160000 -5 United States ... [100 rows x 10 columns]
Efficient slicing of the metadata
>>> with Resource(file) as res: >>> meta = res['meta', 1] >>> >>> meta latitude longitude elevation timezone country state county urban ... 1 41.29 -71.82 0.0 -5 None None None None ...
>>> with Resource(file) as res: >>> meta = res['meta', :5] >>> >>> meta latitude longitude elevation timezone country ... 0 41.29 -71.86 0.000000 -5 None ... 1 41.29 -71.82 0.000000 -5 None ... 2 41.25 -71.82 0.000000 -5 None ... 3 41.33 -71.82 15.263158 -5 United States ... 4 41.37 -71.82 25.360000 -5 United States ...
>>> with Resource(file) as res: >>> tz = res['meta', :, 'timezone'] >>> >>> tz 0 -5 1 -5 2 -5 3 -5 4 -5 .. 95 -5 96 -5 97 -5 98 -5 99 -5 Name: timezone, Length: 100, dtype: int64
>>> with Resource(file) as res: >>> lat_lon = res['meta', :, ['latitude', 'longitude']] >>> >>> lat_lon latitude longitude 0 41.29 -71.86 1 41.29 -71.82 2 41.25 -71.82 3 41.33 -71.82 4 41.37 -71.82 .. ... ... 95 41.25 -71.66 96 41.89 -71.66 97 41.45 -71.66 98 41.61 -71.66 99 41.41 -71.66 [100 rows x 2 columns]
Extracting resource variables (datasets)
>>> with Resource(file) as res: >>> wspd = res['wind_speed'] >>> >>> wspd [[12. 12. 12. ... 12. 12. 12.] [12. 12. 12. ... 12. 12. 12.] [12. 12. 12. ... 12. 12. 12.] ... [14. 14. 14. ... 14. 14. 14.] [15. 15. 15. ... 15. 15. 15.] [15. 15. 15. ... 15. 15. 15.]]
Efficient slicing of variables
>>> with Resource(file) as res: >>> wspd = res['wind_speed', :2] >>> >>> wspd [[12. 12. 12. 12. 12. 12. 53. 53. 53. 53. 53. 12. 53. 1. 1. 12. 12. 12. 1. 1. 12. 53. 53. 53. 12. 12. 12. 12. 12. 1. 12. 12. 1. 12. 12. 53. 12. 53. 1. 12. 1. 53. 53. 12. 12. 12. 12. 1. 1. 1. 12. 12. 1. 1. 12. 12. 53. 53. 53. 12. 12. 53. 53. 12. 12. 12. 12. 12. 12. 1. 53. 1. 53. 12. 12. 53. 53. 1. 1. 1. 53. 12. 1. 1. 53. 53. 53. 12. 12. 12. 12. 12. 12. 12. 1. 12. 1. 12. 12. 12.] [12. 12. 12. 12. 12. 12. 53. 53. 53. 53. 53. 12. 53. 1. 1. 12. 12. 12. 1. 1. 12. 53. 53. 53. 12. 12. 12. 12. 12. 1. 12. 12. 1. 12. 12. 53. 12. 53. 1. 12. 1. 53. 53. 12. 12. 12. 12. 1. 1. 1. 12. 12. 1. 1. 12. 12. 53. 53. 53. 12. 12. 53. 53. 12. 12. 12. 12. 12. 12. 1. 53. 1. 53. 12. 12. 53. 53. 1. 1. 1. 53. 12. 1. 1. 53. 53. 53. 12. 12. 12. 12. 12. 12. 12. 1. 12. 1. 12. 12. 12.]]
>>> with Resource(file) as res: >>> wspd = res['wind_speed', :, [2, 3]] >>> >>> wspd [[12. 12.] [12. 12.] [12. 12.] ... [14. 14.] [15. 15.] [15. 15.]]
- Parameters:
h5_file (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)
unscale (bool, optional) – Boolean flag to automatically unscale variables on extraction, by default True
str_decode (bool, optional) – Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read, by default True
group (str, optional) – Group within .h5 resource file to open, by default None
hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default
hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None
Methods
close
()Close h5 instance
df_str_decode
(df)Decode a dataframe with byte string columns into ordinary str cols.
get_SAM_df
(site)Placeholder for get_SAM_df method that it resource specific
get_attrs
([dset])Get h5 attributes either from file or dataset
get_dset_properties
(dset)Get dataset properties (shape, dtype, chunks)
get_meta_arr
(rec_name[, rows])Get a meta array by name (faster than DataFrame extraction).
get_scale_factor
(dset)Get dataset scale factor
get_units
(dset)Get dataset units
is_hsds_file
(file_path)Parse one or more filepath to determine if it is hsds
is_s3_file
(file_path)Parse one or more filepath to determine if it is s3
open_dataset
(ds_name)Open resource dataset
open_file
(file_path[, mode, hsds, hsds_kwargs])Open a filepath to an h5, s3, or hsds nrel resource file with the appropriate python object.
preload_SAM
(h5_file, sites, tech[, unscale, ...])Pre-load project_points for SAM
Attributes
ADD_ATTR
SCALE_ATTR
UNIT_ATTR
Dictionary of all dataset add offset factors
Dictionary of all dataset attributes
Dictionary of all dataset chunk sizes
(lat, lon) pairs
Get the version attribute of the data.
Datasets available
Datasets available
Dictionary of all dataset dtypes
Global (file) attributes
Groups available
Open h5py File instance.
Extract (latitude, longitude) pairs
Resource meta data DataFrame
Available resource datasets
Available resource datasets
Dictionary of all dataset scale factors
Resource shape (timesteps, sites) shape = (len(time_index), len(meta))
Dictionary of all dataset shapes
Resource DatetimeIndex
Dictionary of all dataset units
- property adders
Dictionary of all dataset add offset factors
- Returns:
adders (dict)
- property attrs
Dictionary of all dataset attributes
- Returns:
attrs (dict)
- property chunks
Dictionary of all dataset chunk sizes
- Returns:
chunks (dict)
- close()
Close h5 instance
- property coordinates
(lat, lon) pairs
- Returns:
lat_lon (ndarray)
- Type:
Coordinates
- property data_version
Get the version attribute of the data. None if not available.
- Returns:
version (str | None)
- property datasets
Datasets available
- Returns:
list
- static df_str_decode(df)
Decode a dataframe with byte string columns into ordinary str cols.
- Parameters:
df (pd.DataFrame) – Dataframe with some columns being byte strings.
- Returns:
df (pd.DataFrame) – DataFrame with str columns instead of byte str columns.
- property dsets
Datasets available
- Returns:
list
- property dtypes
Dictionary of all dataset dtypes
- Returns:
dtypes (dict)
- get_SAM_df(site)
Placeholder for get_SAM_df method that it resource specific
- Parameters:
site (int) – Site to extract SAM DataFrame for
- get_attrs(dset=None)
Get h5 attributes either from file or dataset
- Parameters:
dset (str) – Dataset to get attributes for, if None get file (global) attributes
- Returns:
attrs (dict) – Dataset or file attributes
- get_dset_properties(dset)
Get dataset properties (shape, dtype, chunks)
- Parameters:
dset (str) – Dataset to get scale factor for
- Returns:
shape (tuple) – Dataset array shape
dtype (str) – Dataset array dtype
chunks (tuple) – Dataset chunk size
- get_meta_arr(rec_name, rows=slice(None, None, None))
Get a meta array by name (faster than DataFrame extraction).
- Parameters:
rec_name (str) – Named record from the meta data to retrieve.
rows (slice) – Rows of the record to extract.
- Returns:
meta_arr (np.ndarray) – Extracted array from the meta data record name.
- get_scale_factor(dset)
Get dataset scale factor
- Parameters:
dset (str) – Dataset to get scale factor for
- Returns:
float – Dataset scale factor, used to unscale int values to floats
- get_units(dset)
Get dataset units
- Parameters:
dset (str) – Dataset to get units for
- Returns:
str – Dataset units, None if not defined
- property global_attrs
Global (file) attributes
- Returns:
global_attrs (dict)
- property groups
Groups available
- Returns:
groups (list) – List of groups
- property h5
Open h5py File instance. If _group is not None return open Group
- Returns:
h5 (h5py.File | h5py.Group)
- static is_hsds_file(file_path)
Parse one or more filepath to determine if it is hsds
- Parameters:
file_path (str | list) – One or more file paths (only the first is parsed if multiple)
- Returns:
is_hsds_file (bool) – True if hsds
- static is_s3_file(file_path)
Parse one or more filepath to determine if it is s3
- Parameters:
file_path (str | list) – One or more file paths (only the first is parsed if multiple)
- Returns:
is_s3_file (bool) – True if s3
- property lat_lon
Extract (latitude, longitude) pairs
- Returns:
lat_lon (ndarray)
- property meta
Resource meta data DataFrame
- Returns:
meta (pandas.DataFrame)
- open_dataset(ds_name)
Open resource dataset
- Parameters:
ds_name (str) – Dataset name to open
- Returns:
ds (ResourceDataset) – Resource for open resource dataset
- classmethod open_file(file_path, mode='r', hsds=False, hsds_kwargs=None)
Open a filepath to an h5, s3, or hsds nrel resource file with the appropriate python object.
- Parameters:
file_path (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)
mode (str, optional) – Mode to instantiate h5py.File instance, by default ‘r’
hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default
hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None
- Returns:
file (h5py.File | h5pyd.File) – H5 file handler either opening the local file using h5py, or the file on s3 using h5py and fsspec, or the file on HSDS using h5pyd.
- classmethod preload_SAM(h5_file, sites, tech, unscale=True, str_decode=True, group=None, hsds=False, hsds_kwargs=None, time_index_step=None, means=False)
Pre-load project_points for SAM
- Parameters:
h5_file (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)
sites (list) – List of sites to be provided to SAM (sites is synonymous with gids aka spatial indices)
tech (str) – Technology to be run by SAM
unscale (bool) – Boolean flag to automatically unscale variables on extraction
str_decode (bool) – Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read.
group (str) – Group within .h5 resource file to open
hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default
hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None
time_index_step (int, optional) – Step size for time_index, used to reduce temporal resolution, by default None
means (bool, optional) – Boolean flag to compute mean resource when res_array is set, by default False
- Returns:
SAM_res (SAMResource) – Instance of SAMResource pre-loaded with Solar resource for sites in project_points
- property res_dsets
Available resource datasets
- Returns:
list
- property resource_datasets
Available resource datasets
- Returns:
list
- property scale_factors
Dictionary of all dataset scale factors
- Returns:
scale_factors (dict)
- property shape
Resource shape (timesteps, sites) shape = (len(time_index), len(meta))
- Returns:
shape (tuple)
- property shapes
Dictionary of all dataset shapes
- Returns:
shapes (dict)
- property time_index
Resource DatetimeIndex
- Returns:
time_index (pandas.DatetimeIndex)
- property units
Dictionary of all dataset units
- Returns:
units (dict)