rex.sam_resource.SAMResource

class SAMResource(sites, tech, time_index, hub_heights=None, depths=None, require_wind_dir=False, means=False)[source]

Bases: object

Resource container for SAM. Resource handlers preload the datasets needed by SAM for the sites of interest. SAMResource handles all ETL needed before resource data is passed into SAM.

Examples

>>> import os
>>> from rex import TESTDATADIR, WindResource
>>> file = os.path.join(TESTDATADIR, 'wtk/ri_100_wtk_2012.h5')

Here we load a SAM Resource container for a windpower analysis for sites 7 and 8 at a hub height of 90m:

>>> sam = WindResource.preload_SAM(file, sites=[7, 8], hub_heights=90)
>>> sam
SAMResource with 2 windpower sites

You can then use the SAMResource object to easily retrieve the data that is needed to run the SAM windpower module:

>>> sam[7]
                           winddirection  pressure  temperature  windspeed
2012-01-01 00:00:00+00:00            0.0  0.965329        4.270   7.565000
2012-01-01 01:00:00+00:00            0.0  0.965921        3.870   8.040000
2012-01-01 02:00:00+00:00            0.0  0.966612        4.070  10.370000
2012-01-01 03:00:00+00:00            0.0  0.966721        4.060  11.174999
2012-01-01 04:00:00+00:00            0.0  0.967224        3.515   8.570000
...                                  ...       ...          ...        ...
2012-12-31 19:00:00+00:00            0.0  0.967826       -1.965   6.515000
2012-12-31 20:00:00+00:00            0.0  0.967036       -2.095   6.750000
2012-12-31 21:00:00+00:00            0.0  0.966740       -2.495   9.215000
2012-12-31 22:00:00+00:00            0.0  0.966158       -2.735  10.680000
2012-12-31 23:00:00+00:00            0.0  0.965852       -2.460  10.805000

[8784 rows x 4 columns]

>>> sam['meta', 7]
latitude         41.975849
longitude       -71.762329
country      United States
state                   RI
county          Providence
timezone                -5
elevation              208
offshore                 0
Name: 7, dtype: object
>>> sam['meta', 8]
latitude         41.993584
longitude       -71.754852
country      United States
state                   RI
county          Providence
timezone                -5
elevation              180
offshore                 0
Name: 8, dtype: object
>>> sam['meta', 9]
KeyError: 9
Parameters:
  • sites (int | list | tuple | slice) – int, list, tuple, or slice indicating sites to send to SAM (sites is synonymous with gids aka spatial indices)

  • tech (str) – SAM technology string. See class attributes for options.

  • time_index (pandas.DatetimeIndex) – Time-series datetime index

  • hub_heights (int | float | list, optional) – Hub height(s) to extract wind data at, by default None

  • depths (int | float | list, optional) – Depth(s) to extract wind data at, by default None

  • require_wind_dir (bool, optional) – Boolean flag indicating that wind direction is required, by default False

  • means (bool, optional) – Boolean flag to compute mean resource when res_array is set, by default False

Methods

append_var_list(var)

Append a new variable to the SAM resource protected var_list.

bias_correct(bc_df)

Bias correct wind or irradiance data using a table of linear correction factors per resource gid.

check_irradiance_datasets(datasets[, clearsky])

Check available irradiance datasets

check_units(var_name, var_array, tech)

Check units of variable array and convert to SAM units if needed

compute_irradiance([clearsky])

Fillin missing irradiance dataset from available values and SZA

curtail_windspeed(gids, curtailment)

Apply temporal curtailment mask to windspeed resource at given sites

enforce_arr_range(var, arr, valid_range, sites)

Check an array for valid data range, warn, patch, and return.

load_rex_resource(rex_res, var_list, ...[, ...])

Load data from a rex Resource handler into this SAMResource container.

roll_timeseries(time_series, timezone, ...)

Roll timeseries array to given timezone from UTC

runnable()

Check to see if SAMResource iterator is runnable: - Meta must be loaded - Variables in var_list must be loaded

set_clearsky()

Make the NSRDB var list for solar based on clearsky irradiance.

Attributes

ALIASES

CSP_DATA_RANGES

DATA_RANGES

FLAT_VARS

GEOTHERMAL_DATA_RANGES

LF_DATA_RANGES

PV_DATA_RANGES

RES_VARS

SWH_DATA_RANGES

TPPH_DATA_RANGES

WAVE_DATA_RANGES

WIND_DATA_RANGES

d

Get depths for geothermal sites

h

Get heights for wind sites

lat_lon

site latitudes and longitudes

meta

Return sites meta

shape

Shape of variable arrays

sites

Sites being pre-loaded for SAM

sites_slice

Get the sites in slice format if possible

sza

Solar zenith angle for sites of interest

time_index

Return time_index

var_list

Return variable list associated with SAMResource type

property sites

Sites being pre-loaded for SAM

Returns:

sites (list) – List of sites to be provided to SAM (sites is synonymous with gids aka spatial indices)

property sites_slice

Get the sites in slice format if possible

Returns:

sites (list | slice) – Sites slice belonging to this instance of ProjectPoints. The type is slice if possible. Will be a list only if sites are non-sequential. (sites is synonymous with gids aka spatial indices)

property shape

Shape of variable arrays

Returns:

self._shape (tuple) – Shape (time_index, sites) of variable arrays

property var_list

Return variable list associated with SAMResource type

Returns:

_var_list (list) – List of resource variables associated with resource type (‘solar’ or ‘wind’)

property time_index

Return time_index

Returns:

self._time_index (pandas.DatetimeIndex) – Time-series datetime index

property meta

Return sites meta

Returns:

self._meta (pandas.DataFrame) – DataFrame of sites meta data

property h

Get heights for wind sites

Returns:

self._h (int | float | list) – Hub height or height(s) for wind resource, None for other resource

property d

Get depths for geothermal sites

Returns:

self._d (int | float | list) – Depth(s) for geothermal resource, None for other resource

property lat_lon

site latitudes and longitudes

Returns:

ndarray

property sza

Solar zenith angle for sites of interest

Returns:

ndarray

static check_units(var_name, var_array, tech)[source]

Check units of variable array and convert to SAM units if needed

Parameters:
  • var_name (str) – Variable name

  • var_array (ndarray) – Variable data

  • tech (str) – SAM technology string (windpower, pvwattsv5, solarwaterheat, etc..)

Returns:

var_array (ndarray) – Variable data with updated units if needed

static enforce_arr_range(var, arr, valid_range, sites)[source]

Check an array for valid data range, warn, patch, and return.

Parameters:
  • var (str) – variable name

  • arr (np.ndarray) – Array to be checked and patched

  • valid_range (np.ndarray | tuple | list) – arr data will be ensured within the min/max values of valid_range

  • sites (list) – Resource gid site list for warning printout. (sites is synonymous with gids aka spatial indices)

Returns:

arr (np.ndarray) – Patched array with valid range.

static roll_timeseries(time_series, timezone, time_interval)[source]

Roll timeseries array to given timezone from UTC

Parameters:
  • time_series (ndarray) – time_series array to roll

  • timezone (int) – Time zone as UTC offset

  • time_interval (int) – Number of step-steps in an hour, needed to compute time shift

Returns:

time_series (ndarray) – Time series in local time

check_irradiance_datasets(datasets, clearsky=False)[source]

Check available irradiance datasets

Parameters:
  • datasets (list) – List of available datasets in resource .h5 file

  • clearsky (bool, optional) – Flag to check for clearsky irradiance datasets, by default False

compute_irradiance(clearsky=False)[source]

Fillin missing irradiance dataset from available values and SZA

Parameters:

clearsky (bool, optional) – Flag to check for clearsky irradiance datasets, by default False

set_clearsky()[source]

Make the NSRDB var list for solar based on clearsky irradiance.

append_var_list(var)[source]

Append a new variable to the SAM resource protected var_list.

Parameters:

var (str) – New resource variable to be added to the protected var_list property.

bias_correct(bc_df)[source]

Bias correct wind or irradiance data using a table of linear correction factors per resource gid.

Parameters:

bc_df (pd.DataFrame) – DataFrame with wind or solar resource bias correction table. This must have columns “gid” and “method”, where “gid” is the resource file indices, and “method” is a function name from the rex.bias_correction module. Only windspeed or GHI+DNI+DHI are corrected, depending on the technology. See the rex.bias_correction module for more details on available bias correction methods.

runnable()[source]

Check to see if SAMResource iterator is runnable: - Meta must be loaded - Variables in var_list must be loaded

Returns:

bool – Returns True if runnable check passes

curtail_windspeed(gids, curtailment)[source]

Apply temporal curtailment mask to windspeed resource at given sites

Parameters:
  • gids (int | list) – gids for site or list of sites to curtail

  • curtailment (ndarray) – Temporal multiplier for curtailment

load_rex_resource(rex_res, var_list, time_slice, sites, hh=None, hh_unit='m')[source]

Load data from a rex Resource handler into this SAMResource container.

Parameters:
  • rex_res (rex.Resource) – rex Resource handler or similar (NSRDB, WindResource, MultiFileResource, etc…)

  • var_list (list) – List of variables to retrieve from rex_res. These names may be manipulated with suffixes such as _100m (for a 100m hh input)

  • time_slice (slice) – Slicing argument for the resource temporal dimension (axis=0)

  • sites (list | slice | int) – List of site indices (axis=1) (sites is synonymous with gids aka spatial indices)

  • hh (None | int) – Optional single hub height in meters that datasets are to be loaded from rex_res at

  • hh_unit (str) – Unit suffix for the hub height input.