rex.resource.BaseResource

class BaseResource(h5_file, mode='r', unscale=True, str_decode=True, group=None, hsds=False, hsds_kwargs=None)[source]

Bases: BaseDatasetIterable

Abstract Base class to handle resource .h5 files

Parameters:
  • h5_file (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)

  • mode (str, optional) – Mode to instantiate h5py.File instance, by default ‘r’

  • unscale (bool, optional) – Boolean flag to automatically unscale variables on extraction, by default True

  • str_decode (bool, optional) – Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read, by default True

  • group (str, optional) – Group within .h5 resource file to open, by default None

  • hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default

  • hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None

Methods

close()

Close h5 instance

df_str_decode(df)

Decode a dataframe with byte string columns into ordinary str cols.

get_SAM_df(site)

Placeholder for get_SAM_df method that it resource specific

get_attrs([dset])

Get h5 attributes either from file or dataset

get_dset_properties(dset)

Get dataset properties (shape, dtype, chunks)

get_meta_arr(rec_name[, rows])

Get a meta array by name (faster than DataFrame extraction).

get_scale_factor(dset)

Get dataset scale factor

get_units(dset)

Get dataset units

is_hsds_file(file_path)

Parse one or more filepath to determine if it is hsds

is_s3_file(file_path)

Parse one or more filepath to determine if it is s3

open_dataset(ds_name)

Open resource dataset

open_file(file_path[, mode, hsds, hsds_kwargs])

Open a filepath to an h5, s3, or hsds nrel resource file with the appropriate python object.

preload_SAM(h5_file, sites, tech[, unscale, ...])

Pre-load project_points for SAM

Attributes

ADD_ATTR

SCALE_ATTR

UNIT_ATTR

adders

Dictionary of all dataset add offset factors

attrs

Dictionary of all dataset attributes

chunks

Dictionary of all dataset chunk sizes

coordinates

(lat, lon) pairs

data_version

Get the version attribute of the data.

datasets

Datasets available

dsets

Datasets available

dtypes

Dictionary of all dataset dtypes

global_attrs

Global (file) attributes

groups

Groups available

h5

Open h5py File instance.

lat_lon

Extract (latitude, longitude) pairs

meta

Resource meta data DataFrame

res_dsets

Available resource datasets

resource_datasets

Available resource datasets

scale_factors

Dictionary of all dataset scale factors

shape

Resource shape (timesteps, sites) shape = (len(time_index), len(meta))

shapes

Dictionary of all dataset shapes

time_index

Resource DatetimeIndex

units

Dictionary of all dataset units

property h5

Open h5py File instance. If _group is not None return open Group

Returns:

h5 (h5py.File | h5py.Group)

property datasets

Datasets available

Returns:

list

property dsets

Datasets available

Returns:

list

property resource_datasets

Available resource datasets

Returns:

list

property res_dsets

Available resource datasets

Returns:

list

property groups

Groups available

Returns:

groups (list) – List of groups

property shape

Resource shape (timesteps, sites) shape = (len(time_index), len(meta))

Returns:

shape (tuple)

property meta

Resource meta data DataFrame

Returns:

meta (pandas.DataFrame)

property time_index

Resource DatetimeIndex

Returns:

time_index (pandas.DatetimeIndex)

property coordinates

(lat, lon) pairs

Returns:

lat_lon (ndarray)

Type:

Coordinates

property lat_lon

Extract (latitude, longitude) pairs

Returns:

lat_lon (ndarray)

property data_version

Get the version attribute of the data. None if not available.

Returns:

version (str | None)

property global_attrs

Global (file) attributes

Returns:

global_attrs (dict)

property attrs

Dictionary of all dataset attributes

Returns:

attrs (dict)

property shapes

Dictionary of all dataset shapes

Returns:

shapes (dict)

property dtypes

Dictionary of all dataset dtypes

Returns:

dtypes (dict)

property chunks

Dictionary of all dataset chunk sizes

Returns:

chunks (dict)

property adders

Dictionary of all dataset add offset factors

Returns:

adders (dict)

property scale_factors

Dictionary of all dataset scale factors

Returns:

scale_factors (dict)

property units

Dictionary of all dataset units

Returns:

units (dict)

static df_str_decode(df)[source]

Decode a dataframe with byte string columns into ordinary str cols.

Parameters:

df (pd.DataFrame) – Dataframe with some columns being byte strings.

Returns:

df (pd.DataFrame) – DataFrame with str columns instead of byte str columns.

open_dataset(ds_name)[source]

Open resource dataset

Parameters:

ds_name (str) – Dataset name to open

Returns:

ds (ResourceDataset) – Resource for open resource dataset

classmethod open_file(file_path, mode='r', hsds=False, hsds_kwargs=None)[source]

Open a filepath to an h5, s3, or hsds nrel resource file with the appropriate python object.

Parameters:
  • file_path (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)

  • mode (str, optional) – Mode to instantiate h5py.File instance, by default ‘r’

  • hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default

  • hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None

Returns:

file (h5py.File | h5pyd.File) – H5 file handler either opening the local file using h5py, or the file on s3 using h5py and fsspec, or the file on HSDS using h5pyd.

static is_hsds_file(file_path)[source]

Parse one or more filepath to determine if it is hsds

Parameters:

file_path (str | list) – One or more file paths (only the first is parsed if multiple)

Returns:

is_hsds_file (bool) – True if hsds

static is_s3_file(file_path)[source]

Parse one or more filepath to determine if it is s3

Parameters:

file_path (str | list) – One or more file paths (only the first is parsed if multiple)

Returns:

is_s3_file (bool) – True if s3

get_attrs(dset=None)[source]

Get h5 attributes either from file or dataset

Parameters:

dset (str) – Dataset to get attributes for, if None get file (global) attributes

Returns:

attrs (dict) – Dataset or file attributes

get_dset_properties(dset)[source]

Get dataset properties (shape, dtype, chunks)

Parameters:

dset (str) – Dataset to get scale factor for

Returns:

  • shape (tuple) – Dataset array shape

  • dtype (str) – Dataset array dtype

  • chunks (tuple) – Dataset chunk size

get_scale_factor(dset)[source]

Get dataset scale factor

Parameters:

dset (str) – Dataset to get scale factor for

Returns:

float – Dataset scale factor, used to unscale int values to floats

get_units(dset)[source]

Get dataset units

Parameters:

dset (str) – Dataset to get units for

Returns:

str – Dataset units, None if not defined

get_meta_arr(rec_name, rows=slice(None, None, None))[source]

Get a meta array by name (faster than DataFrame extraction).

Parameters:
  • rec_name (str) – Named record from the meta data to retrieve.

  • rows (slice) – Rows of the record to extract.

Returns:

meta_arr (np.ndarray) – Extracted array from the meta data record name.

get_SAM_df(site)[source]

Placeholder for get_SAM_df method that it resource specific

Parameters:

site (int) – Site to extract SAM DataFrame for

close()[source]

Close h5 instance

classmethod preload_SAM(h5_file, sites, tech, unscale=True, str_decode=True, group=None, hsds=False, hsds_kwargs=None, time_index_step=None, means=False)[source]

Pre-load project_points for SAM

Parameters:
  • h5_file (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)

  • sites (list) – List of sites to be provided to SAM (sites is synonymous with gids aka spatial indices)

  • tech (str) – Technology to be run by SAM

  • unscale (bool) – Boolean flag to automatically unscale variables on extraction

  • str_decode (bool) – Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read.

  • group (str) – Group within .h5 resource file to open

  • hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default

  • hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None

  • time_index_step (int, optional) – Step size for time_index, used to reduce temporal resolution, by default None

  • means (bool, optional) – Boolean flag to compute mean resource when res_array is set, by default False

Returns:

SAM_res (SAMResource) – Instance of SAMResource pre-loaded with Solar resource for sites in project_points