rex.renewable_resource.WindResource
- class WindResource(h5_file, mode='r', unscale=True, str_decode=True, group=None, use_lapse_rate=True, hsds=False, hsds_kwargs=None)[source]
Bases:
AbstractInterpolatedResource
Class to handle Wind BaseResource .h5 files
Notes
Interpolation between hub-heights is performed using linear interpolation. While wind follows a log profile macroscopically, using power law interpolation doesn’t allow for negative wind shear, which we see often at the taller hub heights we care about. In other words, power law interpolation is a bad assumption for near surface wind, and linear interpolation is a much better approach. Extrapolation beyond the resource data hub heights is still performed using power law interpolation.
See also
resource.AbstractInterpolatedResource
Parent class
Examples
>>> import os >>> from rex import TESTDATADIR, WindResource >>> file = os.path.join(TESTDATADIR, 'wtk/ri_100_wtk_2012.h5') >>> with WindResource(file) as res: >>> print(res.datasets) ['meta', 'pressure_0m', 'pressure_100m', 'pressure_200m', 'temperature_100m', 'temperature_80m', 'time_index', 'winddirection_100m', 'winddirection_80m', 'windspeed_100m', 'windspeed_80m']
WindResource can interpolate between available hub-heights (80 & 100)
>>> with WindResource(file) as res: >>> wspd_90m = res['windspeed_90m'] >>> >>> wspd_90m [[ 6.865 6.77 6.565 ... 8.65 8.62 8.415 ] [ 7.56 7.245 7.685 ... 5.9649997 5.8 6.2 ] [ 9.775 9.21 9.225 ... 7.12 7.495 7.675 ] ... [ 8.38 8.440001 8.85 ... 11.934999 12.139999 12.4 ] [ 9.900001 9.895 9.93 ... 12.825 12.86 12.965 ] [ 9.895 10.01 10.305 ... 14.71 14.79 14.764999 ]]
WindResource can also extrapolate beyond available hub-heights
>>> with WindResource(file) as res: >>> wspd_150m = res['windspeed_150m'] >>> >>> wspd_150m ExtrapolationWarning: 150 is outside the height range (80, 100). Extrapolation to be used. [[ 7.336291 7.2570405 7.0532546 ... 9.736436 9.713792 9.487364 ] [ 8.038219 7.687255 8.208041 ... 6.6909685 6.362647 6.668326 ] [10.5515785 9.804363 9.770399 ... 8.026898 8.468434 8.67222 ] ... [ 9.079792 9.170363 9.634542 ... 13.472508 13.7102585 14.004617 ] [10.710078 10.710078 10.698757 ... 14.468795 14.514081 14.6386175] [10.698757 10.857258 11.174257 ... 16.585903 16.676476 16.653833 ]]
- Parameters:
h5_file (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)
mode (str, optional) – Mode to instantiate h5py.File instance, by default ‘r’
unscale (bool) – Boolean flag to automatically unscale variables on extraction
str_decode (bool) – Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read.
group (str) – Group within .h5 resource file to open
use_lapse_rate (bool) – If a dataset is only available at a single hub-height and this flag value is set to True, pressure / temperature values will be calculated using linear lapse rate adjustment from the available hub height to the requested one. If the flag value is set to False, the value of these variables at the single available hub-height will be returned for all requested heights. This option has no effect if data is available at multiple hub-heights.
hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default
hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None
Methods
circular_interp
(ts_1, h_1, ts_2, h_2, h)Circular interpolate/extrapolate time-series data to height h
close
()Close h5 instance
df_str_decode
(df)Decode a dataframe with byte string columns into ordinary str cols.
get_SAM_df
(site, height[, require_wind_dir, ...])Get SAM wind resource DataFrame for given site
get_attrs
([dset])Get h5 attributes either from file or dataset
get_dset_properties
(dset)Get dataset properties (shape, dtype, chunks)
get_meta_arr
(rec_name[, rows])Get a meta array by name (faster than DataFrame extraction).
get_scale_factor
(dset)Get dataset scale factor
get_units
(dset)Get dataset units
is_hsds_file
(file_path)Parse one or more filepath to determine if it is hsds
is_s3_file
(file_path)Parse one or more filepath to determine if it is s3
monin_obukhov_extrapolation
(ts_1, h_1, z0, L, h)Monin-Obukhov extrapolation
open_dataset
(ds_name)Open resource dataset
open_file
(file_path[, mode, hsds, hsds_kwargs])Open a filepath to an h5, s3, or hsds nrel resource file with the appropriate python object.
power_law_interp
(ts_1, h_1, ts_2, h_2, h[, mean])Power-law interpolate/extrapolate time-series data to height h
preload_SAM
(h5_file, sites, hub_heights[, ...])Placeholder for classmethod that will pre-load project_points for SAM
shortest_angle
(a0, a1)Calculate the shortest angle distance between a0 and a1
stability_function
(zeta)Calculate stability function depending on sign of L (negative is unstable, positive is stable)
Attributes
ADD_ATTR
INTERPOLABLE_DSETS
Air Temperature and Pressure lapse rate in C/km and Pa/km
SCALE_ATTR
UNIT_ATTR
VARIABLE_NAME
VARIABLE_UNIT
Dictionary of all dataset add offset factors
Dictionary of all dataset attributes
Dictionary of all dataset chunk sizes
(lat, lon) pairs
Get the version attribute of the data.
Datasets available
Datasets available
Dictionary of all dataset dtypes
Global (file) attributes
Groups available
Open h5py File instance.
Extract (latitude, longitude) pairs
Resource meta data DataFrame
Available resource datasets
Available resource datasets
Dictionary of all dataset scale factors
Resource shape (timesteps, sites) shape = (len(time_index), len(meta))
Dictionary of all dataset shapes
Resource DatetimeIndex
Dictionary of all dataset units
- classmethod monin_obukhov_extrapolation(ts_1, h_1, z0, L, h)[source]
Monin-Obukhov extrapolation
- Parameters:
ts_1 (ndarray) – Time-series array at height h_1
- h_1int | float
Height corresponding to time-seris ts_1
- z0: int | float | ndarray
Roughness length
- Lndarray
time-series of Obukhov length (m; measure of stability)
- hint | float
Desired height
- Returns:
ndarray – new wind speed from MO extrapolation.
- static stability_function(zeta)[source]
Calculate stability function depending on sign of L (negative is unstable, positive is stable)
- Parameters:
zeta (ndarray) – Normalized length
- Returns:
numpy.ndarray – stability measurements.
- static power_law_interp(ts_1, h_1, ts_2, h_2, h, mean=True)[source]
Power-law interpolate/extrapolate time-series data to height h
- Parameters:
ts_1 (ndarray) – Time-series array at height h_1
h_1 (int | float) – Height corresponding to time-seris ts_1
ts_2 (ndarray) – Time-series array at height h_2
h_2 (int | float) – Height corresponding to time-seris ts_2
h (int | float) – Height of desired time-series
mean (bool) – Calculate average alpha versus point by point alpha
- Returns:
out (ndarray) – Time-series array at height h
Notes
While wind follows a log profile macroscopically, using power law interpolation doesn’t allow for negative wind shear, which we see often at the taller hub heights we care about. This means yous should prefer linear interpolation over power law interpolation when possible for near surface wind.
- static shortest_angle(a0, a1)[source]
Calculate the shortest angle distance between a0 and a1
- Parameters:
a0 (int | float) – angle 0 in degrees
a1 (int | float) – angle 1 in degrees
- Returns:
da (int | float) – shortest angle distance between a0 and a1
- classmethod circular_interp(ts_1, h_1, ts_2, h_2, h)[source]
Circular interpolate/extrapolate time-series data to height h
- Parameters:
ts_1 (ndarray) – Time-series array at height h_1
h_1 (int | float) – Height corresponding to time-seris ts_1
ts_2 (ndarray) – Time-series array at height h_2
h_2 (int | float) – Height corresponding to time-seris ts_2
h (int | float) – Height of desired time-series
- Returns:
out (ndarray) – Time-series array at height h
- get_SAM_df(site, height, require_wind_dir=False, icing=False, add_header=False)[source]
Get SAM wind resource DataFrame for given site
- Parameters:
site (int) – Site to extract SAM DataFrame for
height (int) – Hub height to extract SAM variables at
require_wind_dir (bool, optional) – Boolean flag as to whether wind direction will be loaded, by default False
icing (bool, optional) – Boolean flag to include relativehumitidy for icing calculation, by default False
add_header (bool, optional) – Add units and hub_height below variable names, needed for SAM .csv, by default False
- Returns:
res_df (pandas.DataFrame) – time-series DataFrame of resource variables needed to run SAM
- classmethod preload_SAM(h5_file, sites, hub_heights, unscale=True, str_decode=True, group=None, hsds=False, hsds_kwargs=None, time_index_step=None, means=False, require_wind_dir=False, precip_rate=False, icing=False)[source]
Placeholder for classmethod that will pre-load project_points for SAM
- Parameters:
h5_file (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)
sites (list) – List of sites to be provided to SAM (sites is synonymous with gids aka spatial indices)
hub_heights (int | float | list) – Hub heights to extract for SAM
unscale (bool) – Boolean flag to automatically unscale variables on extraction
str_decode (bool) – Boolean flag to decode the bytestring meta data into normal strings. Setting this to False will speed up the meta data read.
group (str) – Group within .h5 resource file to open
hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default
hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None
time_index_step (int, optional) – Step size for time_index, used to reduce temporal resolution, by default None
means (bool, optional) – Boolean flag to compute mean resource when res_array is set, by default False
require_wind_dir (bool, optional) – Boolean flag as to whether wind direction will be loaded, by default False
precip_rate (bool, optional) – Boolean flag as to whether precipitationrate_0m will be preloaded, by default False
icing (bool, optional) – Boolean flag as to whether icing is analyzed. This will preload relative humidity, by default False
- Returns:
SAM_res (SAMResource) – Instance of SAMResource pre-loaded with Solar resource for sites in project_points
- LAPSE_RATES = {'pressure': 11109, 'temperature': 6.56}
Air Temperature and Pressure lapse rate in C/km and Pa/km
- property adders
Dictionary of all dataset add offset factors
- Returns:
adders (dict)
- property attrs
Dictionary of all dataset attributes
- Returns:
attrs (dict)
- property chunks
Dictionary of all dataset chunk sizes
- Returns:
chunks (dict)
- close()
Close h5 instance
- property coordinates
(lat, lon) pairs
- Returns:
lat_lon (ndarray)
- Type:
Coordinates
- property data_version
Get the version attribute of the data. None if not available.
- Returns:
version (str | None)
- property datasets
Datasets available
- Returns:
list
- static df_str_decode(df)
Decode a dataframe with byte string columns into ordinary str cols.
- Parameters:
df (pd.DataFrame) – Dataframe with some columns being byte strings.
- Returns:
df (pd.DataFrame) – DataFrame with str columns instead of byte str columns.
- property dsets
Datasets available
- Returns:
list
- property dtypes
Dictionary of all dataset dtypes
- Returns:
dtypes (dict)
- get_attrs(dset=None)
Get h5 attributes either from file or dataset
- Parameters:
dset (str) – Dataset to get attributes for, if None get file (global) attributes
- Returns:
attrs (dict) – Dataset or file attributes
- get_dset_properties(dset)
Get dataset properties (shape, dtype, chunks)
- Parameters:
dset (str) – Dataset to get scale factor for
- Returns:
shape (tuple) – Dataset array shape
dtype (str) – Dataset array dtype
chunks (tuple) – Dataset chunk size
- get_meta_arr(rec_name, rows=slice(None, None, None))
Get a meta array by name (faster than DataFrame extraction).
- Parameters:
rec_name (str) – Named record from the meta data to retrieve.
rows (slice) – Rows of the record to extract.
- Returns:
meta_arr (np.ndarray) – Extracted array from the meta data record name.
- get_scale_factor(dset)
Get dataset scale factor
- Parameters:
dset (str) – Dataset to get scale factor for
- Returns:
float – Dataset scale factor, used to unscale int values to floats
- get_units(dset)
Get dataset units
- Parameters:
dset (str) – Dataset to get units for
- Returns:
str – Dataset units, None if not defined
- property global_attrs
Global (file) attributes
- Returns:
global_attrs (dict)
- property groups
Groups available
- Returns:
groups (list) – List of groups
- property h5
Open h5py File instance. If _group is not None return open Group
- Returns:
h5 (h5py.File | h5py.Group)
- static is_hsds_file(file_path)
Parse one or more filepath to determine if it is hsds
- Parameters:
file_path (str | list) – One or more file paths (only the first is parsed if multiple)
- Returns:
is_hsds_file (bool) – True if hsds
- static is_s3_file(file_path)
Parse one or more filepath to determine if it is s3
- Parameters:
file_path (str | list) – One or more file paths (only the first is parsed if multiple)
- Returns:
is_s3_file (bool) – True if s3
- property lat_lon
Extract (latitude, longitude) pairs
- Returns:
lat_lon (ndarray)
- property meta
Resource meta data DataFrame
- Returns:
meta (pandas.DataFrame)
- open_dataset(ds_name)
Open resource dataset
- Parameters:
ds_name (str) – Dataset name to open
- Returns:
ds (ResourceDataset) – Resource for open resource dataset
- classmethod open_file(file_path, mode='r', hsds=False, hsds_kwargs=None)
Open a filepath to an h5, s3, or hsds nrel resource file with the appropriate python object.
- Parameters:
file_path (str) – String filepath to .h5 file to extract resource from. Can also be a path to an HSDS file (starts with /nrel/) or S3 file (starts with s3://)
mode (str, optional) – Mode to instantiate h5py.File instance, by default ‘r’
hsds (bool, optional) – Boolean flag to use h5pyd to handle .h5 ‘files’ hosted on AWS behind HSDS, by default False. This is now redundant; file paths starting with /nrel/ will be treated as hsds=True by default
hsds_kwargs (dict, optional) – Dictionary of optional kwargs for h5pyd, e.g., bucket, username, password, by default None
- Returns:
file (h5py.File | h5pyd.File) – H5 file handler either opening the local file using h5py, or the file on s3 using h5py and fsspec, or the file on HSDS using h5pyd.
- property res_dsets
Available resource datasets
- Returns:
list
- property resource_datasets
Available resource datasets
- Returns:
list
- property scale_factors
Dictionary of all dataset scale factors
- Returns:
scale_factors (dict)
- property shape
Resource shape (timesteps, sites) shape = (len(time_index), len(meta))
- Returns:
shape (tuple)
- property shapes
Dictionary of all dataset shapes
- Returns:
shapes (dict)
- property time_index
Resource DatetimeIndex
- Returns:
time_index (pandas.DatetimeIndex)
- property units
Dictionary of all dataset units
- Returns:
units (dict)