Source code for rex.bias_correction

# -*- coding: utf-8 -*-
"""
Module to perform bias correction of renewable energy resource data
"""
import numpy as np
import logging

from rex.utilities.bc_utils import QuantileDeltaMapping

logger = logging.getLogger(__name__)


def _irrad_pre_proc(ghi, dni, dhi):
    """Irradiance data pre processing to get ancillary variables
    (run before bias correction).

    Parameters
    ----------
    ghi : np.ndarray
        2D array of global horizontal irradiance values in shape (time, space)
    dni : np.ndarray
        2D array of direct normal irradiance values in shape (time, space)
    dhi : np.ndarray
        2D array of diffuse horizontal irradiance values in shape (time, space)

    Returns
    -------
    ghi_zeros : np.ndarray
        2D boolean array, True where ghi==0, same shape as ghi input
    dni_zeros : np.ndarray
        2D boolean array, True where dni==0, same shape as dni input
    dhi_zeros : np.ndarray
        2D boolean array, True where dhi==0, same shape as dhi input
    cos_sza : np.ndarray
        2D array for cos(solar_zenith_angle) calculated from the basic
        relationship ``cos_sza = (ghi - dhi) / dni``
    """

    ghi_zeros = ghi == 0
    dni_zeros = dni == 0
    dhi_zeros = dhi == 0
    with np.errstate(divide='ignore', invalid='ignore'):
        cos_sza = (ghi - dhi) / dni

    return ghi_zeros, dni_zeros, dhi_zeros, cos_sza


def _irrad_post_proc(ghi, dni, ghi_zeros, dni_zeros, dhi_zeros, cos_sza):
    """Irradiance data post processing to calculate DHI and set limits on
    irradiance variables (run after bias correction).

    Parameters
    ----------
    ghi : np.ndarray
        2D array of global horizontal irradiance values in shape (time, space)
    dni : np.ndarray
        2D array of direct normal irradiance values in shape (time, space)
    ghi_zeros : np.ndarray
        2D boolean array, True where ghi==0, same shape as ghi input
    dni_zeros : np.ndarray
        2D boolean array, True where dni==0, same shape as dni input
    dhi_zeros : np.ndarray
        2D boolean array, True where dhi==0, same shape as dhi input
    cos_sza : np.ndarray
        2D array for cos(solar_zenith_angle) calculated from the basic
        relationship ``cos_sza = (ghi - dhi) / dni``

    Returns
    -------
    ghi : np.ndarray
        2D array of global horizontal irradiance values in shape (time, space)
    dni : np.ndarray
        2D array of direct normal irradiance values in shape (time, space)
    dhi : np.ndarray
        2D array of diffuse horizontal irradiance values in shape (time, space)
    """

    ghi = np.maximum(0, ghi)
    dni = np.maximum(0, dni)

    ghi[ghi_zeros] = 0
    dni[dni_zeros] = 0

    with np.errstate(divide='ignore', invalid='ignore'):
        dhi = ghi - (dni * cos_sza)

    dhi[dni_zeros] = ghi[dni_zeros]
    dhi[dhi_zeros] = 0
    dhi = np.maximum(0, dhi)

    assert not np.isnan(dhi).any()

    return ghi, dni, dhi


[docs] def lin_irrad(ghi, dni, dhi, scalar=1, adder=0): """Correct GHI and DNI using linear correction factors. Both irradiance variables are corrected as ``irradiance * scalar + adder``. DHI is preserved based on the relationship ``dhi = ghi - (dni * cos(sza))``. Times when GHI and DNI are zero are preserved and negative values are protected against. Parameters ---------- ghi : np.ndarray 2D array of global horizontal irradiance values in shape (time, space) dni : np.ndarray 2D array of direct normal irradiance values in shape (time, space) dhi : np.ndarray 2D array of diffuse horizontal irradiance values in shape (time, space) scalar : np.ndarray 1D array of linear scalar values in the shape (space,) adder : np.ndarray 1D array of linear adder values in the shape (space,) Returns ------- ghi : np.ndarray 2D array of global horizontal irradiance values in shape (time, space) dni : np.ndarray 2D array of direct normal irradiance values in shape (time, space) dhi : np.ndarray 2D array of diffuse horizontal irradiance values in shape (time, space) """ ghi_zeros, dni_zeros, dhi_zeros, cos_sza = _irrad_pre_proc(ghi, dni, dhi) ghi = ghi * scalar + adder dni = dni * scalar + adder ghi, dni, dhi = _irrad_post_proc(ghi, dni, ghi_zeros, dni_zeros, dhi_zeros, cos_sza) return ghi, dni, dhi
[docs] def lin_ws(ws, scalar=1, adder=0): """Correct windspeed using linear correction factors. Windspeed is corrected as ``windspeed * scalar + adder`` with a minimum of zero. Parameters ---------- ws : np.ndarray 2D array of windspeed values in shape (time, space) scalar : np.ndarray 1D array of linear scalar values in the shape (space,) adder : np.ndarray 1D array of linear adder values in the shape (space,) Returns ------- ws : np.ndarray 2D array of windspeed values in shape (time, space) """ ws = ws * scalar + adder ws = np.maximum(ws, 0) return ws
[docs] def qdm_irrad(ghi, dni, dhi, ghi_params_oh, dni_params_oh, ghi_params_mh, dni_params_mh, ghi_params_mf=None, dni_params_mf=None, dist='empirical', relative=True, sampling='linear', log_base=10): """Correct irradiance using the quantile delta mapping based on the method from Cannon et al., 2015 Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? Journal of Climate 28, 6938–6959 (2015). Parameters ---------- ghi : np.ndarray 2D array of global horizontal irradiance values in shape (time, space) dni : np.ndarray 2D array of direct normal irradiance values in shape (time, space) dhi : np.ndarray 2D array of diffuse horizontal irradiance values in shape (time, space) ghi_params_oh : np.ndarray | list 2D array of **observed historical** distribution parameters created from a multi-year set of data where the shape is (space, N). This can be the output of a parametric distribution fit like ``scipy.stats.weibull_min.fit()`` where N is the number of parameters for that distribution, or this can define the x-values of N points from an empirical CDF that will be linearly interpolated between. If this is an empirical CDF, this must include the 0th and 100th percentile values and have even percentile spacing between values. dni_params_oh : np.ndarray | list Same requirements as ghi_params_oh. This input arg is for the **observed historical distribution** for DNI. ghi_params_mh : np.ndarray | list Same requirements as ghi_params_oh. This input arg is for the **modeled historical distribution** for GHI. dni_params_mh : np.ndarray | list Same requirements as ghi_params_oh. This input arg is for the **modeled historical distribution** for DNI. ghi_params_mf : np.ndarray | list | None Same requirements as ghi_params_oh. This input arg is for the **modeled future distribution** for GHI. If this is None, this defaults to ghi_params_mh (no future data, just corrected to modeled historical distribution) dni_params_mf : np.ndarray | list | None Same requirements as ghi_params_oh. This input arg is for the **modeled future distribution** for DNI. If this is None, this defaults to dni_params_mh. (no future data, just corrected to modeled historical distribution) dist : str | np.ndarray Probability distribution name to use to model the data which determines how the param args are used. This can "empirical" or any continuous distribution name from ``scipy.stats``. Can also be a 1D array of dist inputs if being used from reV, but they must all be the same option. relative : bool | np.ndarray Flag to preserve relative rather than absolute changes in quantiles. relative=False (default) will multiply by the change in quantiles while relative=True will add. See Equations 4-6 from Cannon et al., 2015 for more details. Can also be a 1D array of dist inputs if being used from reV, but they must all be the same option. sampling : str | np.ndarray If dist="empirical", this is an option for how the quantiles were sampled to produce the params inputs, e.g., how to sample the y-axis of the distribution (see sampling functions in ``rex.utilities.bc_utils``). "linear" will do even spacing, "log" will concentrate samples near quantile=0, and "invlog" will concentrate samples near quantile=1. Can also be a 1D array of dist inputs if being used from reV, but they must all be the same option. log_base : int | float | np.ndarray Log base value if sampling is "log" or "invlog". A higher value will concentrate more samples at the extreme sides of the distribution. Can also be a 1D array of dist inputs if being used from reV, but they must all be the same option. Returns ------- ghi : np.ndarray 2D array of global horizontal irradiance values in shape (time, space) dni : np.ndarray 2D array of direct normal irradiance values in shape (time, space) dhi : np.ndarray 2D array of diffuse horizontal irradiance values in shape (time, space) """ ghi_zeros, dni_zeros, dhi_zeros, cos_sza = _irrad_pre_proc(ghi, dni, dhi) ghi_qdm = QuantileDeltaMapping(ghi_params_oh, ghi_params_mh, ghi_params_mf, dist=dist, relative=relative, sampling=sampling, log_base=log_base) dni_qdm = QuantileDeltaMapping(dni_params_oh, dni_params_mh, dni_params_mf, dist=dist, relative=relative, sampling=sampling, log_base=log_base) # This will prevent inverse CDF functions from returning zero resulting in # a divide by zero error in the calculation of the QDM delta. These zeros # get fixed later in _irrad_post_proc ghi[ghi_zeros] = 1 dni[dni_zeros] = 1 ghi = ghi_qdm(ghi) dni = dni_qdm(dni) ghi, dni, dhi = _irrad_post_proc(ghi, dni, ghi_zeros, dni_zeros, dhi_zeros, cos_sza) return ghi, dni, dhi
[docs] def qdm_ws(ws, params_oh, params_mh, params_mf=None, dist='empirical', relative=True, sampling='linear', log_base=10): """Correct windspeed using quantile delta mapping based on the method from Cannon et al., 2015 Cannon, A. J., Sobie, S. R. & Murdock, T. Q. Bias Correction of GCM Precipitation by Quantile Mapping: How Well Do Methods Preserve Changes in Quantiles and Extremes? Journal of Climate 28, 6938–6959 (2015). Parameters ---------- ws : np.ndarray 2D array of windspeed values in shape (time, space) params_oh : np.ndarray | list 2D array of **observed historical** distribution parameters created from a multi-year set of data where the shape is (space, N). This can be the output of a parametric distribution fit like ``scipy.stats.weibull_min.fit()`` where N is the number of parameters for that distribution, or this can define the x-values of N points from an empirical CDF that will be linearly interpolated between. If this is an empirical CDF, this must include the 0th and 100th percentile values and have even percentile spacing between values. params_mh : np.ndarray | list Same requirements as params_oh. This input arg is for the **modeled historical distribution**. params_mf : np.ndarray | list | None Same requirements as params_oh. This input arg is for the **modeled future distribution**. If this is None, this defaults to params_mh (no future data, just corrected to modeled historical distribution) dist : str | np.ndarray Probability distribution name to use to model the data which determines how the param args are used. This can "empirical" or any continuous distribution name from ``scipy.stats``. Can also be a 1D array of dist inputs if being used from reV, but they must all be the same option. relative : bool | np.ndarray Flag to preserve relative rather than absolute changes in quantiles. relative=False (default) will multiply by the change in quantiles while relative=True will add. See Equations 4-6 from Cannon et al., 2015 for more details. Can also be a 1D array of dist inputs if being used from reV, but they must all be the same option. sampling : str | np.ndarray If dist="empirical", this is an option for how the quantiles were sampled to produce the params inputs, e.g., how to sample the y-axis of the distribution (see sampling functions in ``rex.utilities.bc_utils``). "linear" will do even spacing, "log" will concentrate samples near quantile=0, and "invlog" will concentrate samples near quantile=1. Can also be a 1D array of dist inputs if being used from reV, but they must all be the same option. log_base : int | float | np.ndarray Log base value if sampling is "log" or "invlog". A higher value will concentrate more samples at the extreme sides of the distribution. Can also be a 1D array of dist inputs if being used from reV, but they must all be the same option. Returns ------- ws : np.ndarray 2D array of windspeed values in shape (time, space) """ qdm = QuantileDeltaMapping(params_oh, params_mh, params_mf, dist=dist, relative=relative, sampling=sampling, log_base=log_base) # This will prevent inverse CDF functions from returning zero resulting in # a divide by zero error in the calculation of the QDM delta. These zeros # get fixed later ws_zeros = ws == 0 ws[ws_zeros] = 0.01 ws = qdm(ws) ws = np.maximum(ws, 0) ws[ws_zeros] = 0 return ws