Source code for reV.supply_curve.supply_curve

# -*- coding: utf-8 -*-
"""
reV supply curve module
- Calculation of LCOT
- Supply Curve creation
"""
import json
import logging
import os
from itertools import chain
from copy import deepcopy
from warnings import warn

import numpy as np
import pandas as pd
from rex import Resource
from rex.utilities import SpawnProcessPool, parse_table

from reV.handlers.transmission import TransmissionCosts as TC
from reV.handlers.transmission import TransmissionFeatures as TF
from reV.supply_curve.competitive_wind_farms import CompetitiveWindFarms
from reV.utilities import SupplyCurveField, log_versions
from reV.utilities.exceptions import SupplyCurveError, SupplyCurveInputError

logger = logging.getLogger(__name__)


# map is column name to relative order in which it should appear in output file
_REQUIRED_COMPUTE_AND_OUTPUT_COLS = {
    SupplyCurveField.TRANS_GID: 0,
    SupplyCurveField.TRANS_TYPE: 1,
    SupplyCurveField.N_PARALLEL_TRANS: 2,
    SupplyCurveField.DIST_SPUR_KM: 3,
    SupplyCurveField.TOTAL_TRANS_CAP_COST_PER_MW: 10,
    SupplyCurveField.LCOT: 11,
    SupplyCurveField.TOTAL_LCOE: 12,
}
_REQUIRED_OUTPUT_COLS = {SupplyCurveField.DIST_EXPORT_KM: 4,
                         SupplyCurveField.REINFORCEMENT_DIST_KM: 5,
                         SupplyCurveField.TIE_LINE_COST_PER_MW: 6,
                         SupplyCurveField.CONNECTION_COST_PER_MW: 7,
                         SupplyCurveField.EXPORT_COST_PER_MW: 8,
                         SupplyCurveField.REINFORCEMENT_COST_PER_MW: 9,
                         SupplyCurveField.POI_LAT: 13,
                         SupplyCurveField.POI_LON: 14,
                         SupplyCurveField.REINFORCEMENT_POI_LAT: 15,
                         SupplyCurveField.REINFORCEMENT_POI_LON: 16}
DEFAULT_COLUMNS = tuple(str(field)
                        for field in chain(_REQUIRED_COMPUTE_AND_OUTPUT_COLS,
                                           _REQUIRED_OUTPUT_COLS))
"""Default output columns from supply chain computation (not ordered)"""


[docs]class SupplyCurve: """SupplyCurve""" def __init__(self, sc_points, trans_table, sc_features=None, # str() to fix docs sc_capacity_col=str(SupplyCurveField.CAPACITY_AC_MW)): """ReV LCOT calculation and SupplyCurve sorting class. ``reV`` supply curve computes the transmission costs associated with each supply curve point output by ``reV`` supply curve aggregation. Transmission costs can either be computed competitively (where total capacity remaining on the transmission grid is tracked and updated after each new connection) or non-competitively (where the cheapest connections for each supply curve point are allowed regardless of the remaining transmission grid capacity). In both cases, the permutation of transmission costs between supply curve points and transmission grid features should be computed using the `reVX Least Cost Transmission Paths <https://github.com/NREL/reVX/tree/main/reVX/least_cost_xmission>`_ utility. Parameters ---------- sc_points : str | pandas.DataFrame Path to CSV or JSON or DataFrame containing supply curve point summary. Can also be a filepath to a ``reV`` bespoke HDF5 output file where the ``meta`` dataset has the same format as the supply curve aggregation output. .. Note:: If executing ``reV`` from the command line, this input can also be ``"PIPELINE"`` to parse the output of the previous pipeline step and use it as input to this call. However, note that duplicate executions of any preceding commands within the pipeline may invalidate this parsing, meaning the `sc_points` input will have to be specified manually. trans_table : str | pandas.DataFrame | list Path to CSV or JSON or DataFrame containing supply curve transmission mapping. This can also be a list of transmission tables with different line voltage (capacity) ratings. See the `reVX Least Cost Transmission Paths <https://github.com/NREL/reVX/tree/main/reVX/least_cost_xmission>`_ utility to generate these input tables. sc_features : str | pandas.DataFrame, optional Path to CSV or JSON or DataFrame containing additional supply curve features (e.g. transmission multipliers, regions, etc.). These features will be merged to the `sc_points` input table on ALL columns that both have in common. If ``None``, no extra supply curve features are added. By default, ``None``. sc_capacity_col : str, optional Name of capacity column in `trans_sc_table`. The values in this column determine the size of transmission lines built. The transmission capital costs per MW and the reinforcement costs per MW will be returned in terms of these capacity values. Note that if this column != "capacity", then "capacity" must also be included in `trans_sc_table` since those values match the "mean_cf" data (which is used to calculate LCOT and Total LCOE). This input can be used to, e.g., size transmission lines based on solar AC capacity ( ``sc_capacity_col="capacity_ac"``). By default, ``"capacity"``. Examples -------- Standard outputs in addition to the values provided in `sc_points`, produced by :class:`reV.supply_curve.sc_aggregation.SupplyCurveAggregation`: - transmission_multiplier : int | float Transmission cost multiplier that scales the line cost but not the tie-in cost in the calculation of LCOT. - trans_gid : int Unique transmission feature identifier that each supply curve point was connected to. - trans_capacity : float Total capacity (not available capacity) of the transmission feature that each supply curve point was connected to. Default units are MW. - trans_type : str Tranmission feature type that each supply curve point was connected to (e.g. Transline, Substation). - trans_cap_cost_per_mw : float Capital cost of connecting each supply curve point to their respective transmission feature. This value includes line cost with transmission_multiplier and the tie-in cost. Default units are $/MW. - dist_km : float Distance in km from supply curve point to transmission connection. - lcot : float Levelized cost of connecting to transmission ($/MWh). - total_lcoe : float Total LCOE of each supply curve point (mean_lcoe + lcot) ($/MWh). - total_lcoe_friction : float Total LCOE of each supply curve point considering the LCOE friction scalar from the aggregation step (mean_lcoe_friction + lcot) ($/MWh). """ log_versions(logger) logger.info("Supply curve points input: {}".format(sc_points)) logger.info("Transmission table input: {}".format(trans_table)) logger.info("Supply curve capacity column: {}".format(sc_capacity_col)) self._sc_capacity_col = sc_capacity_col self._sc_points = self._parse_sc_points( sc_points, sc_features=sc_features ) self._trans_table = self._map_tables( self._sc_points, trans_table, sc_capacity_col=sc_capacity_col ) self._sc_gids, self._mask = self._parse_sc_gids(self._trans_table) def __repr__(self): msg = "{} with {} points".format(self.__class__.__name__, len(self)) return msg def __len__(self): return len(self._sc_gids) def __getitem__(self, gid): if gid not in self._sc_gids: msg = "Invalid supply curve gid {}".format(gid) logger.error(msg) raise KeyError(msg) i = self._sc_gids.index(gid) return self._sc_points.iloc[i] @staticmethod def _parse_sc_points(sc_points, sc_features=None): """ Import supply curve point summary and add any additional features Parameters ---------- sc_points : str | pandas.DataFrame Path to .csv or .json or DataFrame containing supply curve point summary. Can also now be a filepath to a bespoke h5 where the "meta" dataset has the same format as the sc aggregation output. sc_features : str | pandas.DataFrame Path to .csv or .json or DataFrame containing additional supply curve features, e.g. transmission multipliers, regions Returns ------- sc_points : pandas.DataFrame DataFrame of supply curve point summary with additional features added if supplied """ if isinstance(sc_points, str) and sc_points.endswith(".h5"): with Resource(sc_points) as res: sc_points = res.meta sc_points.index.name = SupplyCurveField.SC_GID sc_points = sc_points.reset_index() else: sc_points = parse_table(sc_points) sc_points = sc_points.rename( columns=SupplyCurveField.map_from_legacy()) logger.debug( "Supply curve points table imported with columns: {}".format( sc_points.columns.values.tolist() ) ) if sc_features is not None: sc_features = parse_table(sc_features) sc_features = sc_features.rename( columns=SupplyCurveField.map_from_legacy()) merge_cols = [c for c in sc_features if c in sc_points] sc_points = sc_points.merge(sc_features, on=merge_cols, how="left") logger.debug( "Adding Supply Curve Features table with columns: {}".format( sc_features.columns.values.tolist() ) ) if "transmission_multiplier" in sc_points: col = "transmission_multiplier" sc_points.loc[:, col] = sc_points.loc[:, col].fillna(1) logger.debug( "Final supply curve points table has columns: {}".format( sc_points.columns.values.tolist() ) ) return sc_points @staticmethod def _get_merge_cols(sc_columns, trans_columns): """ Get columns with 'row' or 'col' in them to use for merging Parameters ---------- sc_columns : list Columns to search trans_cols Returns ------- merge_cols : dict Columns to merge on which maps the sc columns (keys) to the corresponding trans table columns (values) """ sc_columns = [c for c in sc_columns if c.startswith("sc_")] trans_columns = [c for c in trans_columns if c.startswith("sc_")] merge_cols = {} for c_val in ["row", "col"]: trans_col = [c for c in trans_columns if c_val in c] sc_col = [c for c in sc_columns if c_val in c] if trans_col and sc_col: merge_cols[sc_col[0]] = trans_col[0] if len(merge_cols) != 2: msg = ( "Did not find a unique set of sc row and column ids to " "merge on: {}".format(merge_cols) ) logger.error(msg) raise RuntimeError(msg) return merge_cols @staticmethod def _parse_trans_table(trans_table): """ Import transmission features table Parameters ---------- trans_table : pd.DataFrame | str Table mapping supply curve points to transmission features (either str filepath to table file or pre-loaded dataframe). Returns ------- trans_table : pd.DataFrame Loaded transmission feature table. """ trans_table = parse_table(trans_table) # Update legacy transmission table columns to match new less ambiguous # column names: # trans_gid -> the transmission feature id, legacy name: trans_line_gid # trans_line_gids -> gids of transmission lines connected to the given # transmission feature (only used for Substations), # legacy name: trans_gids # also xformer_cost_p_mw -> xformer_cost_per_mw (not sure why there # would be a *_p_mw but here we are...) rename_map = { "trans_line_gid": SupplyCurveField.TRANS_GID, "trans_gids": "trans_line_gids", "xformer_cost_p_mw": "xformer_cost_per_mw", } trans_table = trans_table.rename(columns=rename_map) contains_dist_in_miles = "dist_mi" in trans_table missing_km_dist = SupplyCurveField.DIST_SPUR_KM not in trans_table if contains_dist_in_miles and missing_km_dist: trans_table = trans_table.rename( columns={"dist_mi": SupplyCurveField.DIST_SPUR_KM} ) trans_table[SupplyCurveField.DIST_SPUR_KM] *= 1.60934 drop_cols = [SupplyCurveField.SC_GID, 'cap_left', SupplyCurveField.SC_POINT_GID] drop_cols = [c for c in drop_cols if c in trans_table] if drop_cols: trans_table = trans_table.drop(columns=drop_cols) return trans_table.rename(columns=SupplyCurveField.map_from_legacy()) @staticmethod def _map_trans_capacity(trans_sc_table, sc_capacity_col=SupplyCurveField.CAPACITY_AC_MW): """ Map SC gids to transmission features based on capacity. For any SC gids with capacity > the maximum transmission feature capacity, map SC gids to the feature with the largest capacity Parameters ---------- trans_sc_table : pandas.DataFrame Table mapping supply curve points to transmission features. sc_capacity_col : str, optional Name of capacity column in `trans_sc_table`. The values in this column determine the size of transmission lines built. The transmission capital costs per MW and the reinforcement costs per MW will be returned in terms of these capacity values. Note that if this column != "capacity", then "capacity" must also be included in `trans_sc_table` since those values match the "mean_cf" data (which is used to calculate LCOT and Total LCOE). By default, ``"capacity"``. Returns ------- trans_sc_table : pandas.DataFrame Updated table mapping supply curve points to transmission features based on maximum capacity """ nx = trans_sc_table[sc_capacity_col] / trans_sc_table["max_cap"] nx = np.ceil(nx).astype(int) trans_sc_table[SupplyCurveField.N_PARALLEL_TRANS] = nx if (nx > 1).any(): mask = nx > 1 tie_line_cost = ( trans_sc_table.loc[mask, "tie_line_cost"] * nx[mask] ) xformer_cost = ( trans_sc_table.loc[mask, "xformer_cost_per_mw"] * trans_sc_table.loc[mask, "max_cap"] * nx[mask] ) conn_cost = ( xformer_cost + trans_sc_table.loc[mask, "sub_upgrade_cost"] + trans_sc_table.loc[mask, "new_sub_cost"] ) trans_cap_cost = tie_line_cost + conn_cost trans_sc_table.loc[mask, "tie_line_cost"] = tie_line_cost trans_sc_table.loc[mask, "xformer_cost"] = xformer_cost trans_sc_table.loc[mask, "connection_cost"] = conn_cost trans_sc_table.loc[mask, "trans_cap_cost"] = trans_cap_cost msg = ( "{} SC points have a capacity that exceeds the maximum " "transmission feature capacity and will be connected with " "multiple parallel transmission features.".format( (nx > 1).sum() ) ) logger.info(msg) return trans_sc_table @staticmethod def _parse_trans_line_gids(trans_line_gids): """ Parse json string of trans_line_gids if needed Parameters ---------- trans_line_gids : str | list list of transmission line 'trans_gid's, if a json string, convert to list Returns ------- trans_line_gids : list list of transmission line 'trans_gid's """ if isinstance(trans_line_gids, str): trans_line_gids = json.loads(trans_line_gids) return trans_line_gids @classmethod def _check_sub_trans_lines(cls, features): """ Check to make sure all trans-lines are available for all sub-stations Parameters ---------- features : pandas.DataFrame Table of transmission feature to check substation to transmission line gid connections Returns ------- line_gids : list List of missing transmission line 'trans_gid's for all substations in features table """ features = features.rename( columns={ "trans_line_gid": SupplyCurveField.TRANS_GID, "trans_gids": "trans_line_gids", } ) mask = (features[SupplyCurveField.TRANS_TYPE].str.casefold() == "substation") if not any(mask): return [] line_gids = features.loc[mask, "trans_line_gids"].apply( cls._parse_trans_line_gids ) line_gids = np.unique(np.concatenate(line_gids.values)) test = np.isin(line_gids, features[SupplyCurveField.TRANS_GID].values) return line_gids[~test].tolist() @classmethod def _check_substation_conns(cls, trans_table, sc_cols=SupplyCurveField.SC_GID): """ Run checks on substation transmission features to make sure that every sc point connecting to a substation can also connect to its respective transmission lines Parameters ---------- trans_table : pd.DataFrame Table mapping supply curve points to transmission features (should already be merged with SC points). sc_cols : str | list, optional Column(s) in trans_table with unique supply curve id, by default SupplyCurveField.SC_GID """ missing = {} for sc_point, sc_table in trans_table.groupby(sc_cols): tl_gids = cls._check_sub_trans_lines(sc_table) if tl_gids: missing[sc_point] = tl_gids if any(missing): msg = ( "The following sc_gid (keys) were connected to substations " "but were not connected to the respective transmission line" " gids (values) which is required for full SC sort: {}".format( missing ) ) logger.error(msg) raise SupplyCurveInputError(msg) @classmethod def _check_sc_trans_table(cls, sc_points, trans_table): """Run self checks on sc_points table and the merged trans_table Parameters ---------- sc_points : pd.DataFrame Table of supply curve point summary trans_table : pd.DataFrame Table mapping supply curve points to transmission features (should already be merged with SC points). """ sc_gids = set(sc_points[SupplyCurveField.SC_GID].unique()) trans_sc_gids = set(trans_table[SupplyCurveField.SC_GID].unique()) missing = sorted(list(sc_gids - trans_sc_gids)) if any(missing): msg = ( "There are {} Supply Curve points with missing " "transmission mappings. Supply curve points with no " "transmission features will not be connected! " "Missing sc_gid's: {}".format(len(missing), missing) ) logger.warning(msg) warn(msg) if not any(trans_sc_gids) or not any(sc_gids): msg = ( "Merging of sc points table and transmission features " "table failed with {} original sc gids and {} transmission " "sc gids after table merge.".format( len(sc_gids), len(trans_sc_gids) ) ) logger.error(msg) raise SupplyCurveError(msg) logger.debug( "There are {} original SC gids and {} sc gids in the " "merged transmission table.".format( len(sc_gids), len(trans_sc_gids) ) ) logger.debug( "Transmission Table created with columns: {}".format( trans_table.columns.values.tolist() ) ) @classmethod def _merge_sc_trans_tables(cls, sc_points, trans_table, sc_cols=(SupplyCurveField.SC_GID, SupplyCurveField.CAPACITY_AC_MW, SupplyCurveField.MEAN_CF_AC, SupplyCurveField.MEAN_LCOE), sc_capacity_col=SupplyCurveField.CAPACITY_AC_MW ): """ Merge the supply curve table with the transmission features table. Parameters ---------- sc_points : pd.DataFrame Table of supply curve point summary trans_table : pd.DataFrame | str Table mapping supply curve points to transmission features (either str filepath to table file, list of filepaths to tables by line voltage (capacity) or pre-loaded dataframe). sc_cols : tuple | list, optional List of column from sc_points to transfer into the trans table, If the `sc_capacity_col` is not included, it will get added. by default (SupplyCurveField.SC_GID, 'capacity', 'mean_cf', 'mean_lcoe') sc_capacity_col : str, optional Name of capacity column in `trans_sc_table`. The values in this column determine the size of transmission lines built. The transmission capital costs per MW and the reinforcement costs per MW will be returned in terms of these capacity values. Note that if this column != "capacity", then "capacity" must also be included in `trans_sc_table` since those values match the "mean_cf" data (which is used to calculate LCOT and Total LCOE). By default, ``"capacity"``. Returns ------- trans_sc_table : pd.DataFrame Updated table mapping supply curve points to transmission features. This is performed by an inner merging with trans_table """ if sc_capacity_col not in sc_cols: sc_cols = tuple([sc_capacity_col] + list(sc_cols)) if isinstance(trans_table, (list, tuple)): trans_sc_table = [] for table in trans_table: trans_sc_table.append( cls._merge_sc_trans_tables( sc_points, table, sc_cols=sc_cols, sc_capacity_col=sc_capacity_col, ) ) trans_sc_table = pd.concat(trans_sc_table) else: trans_table = cls._parse_trans_table(trans_table) merge_cols = cls._get_merge_cols( sc_points.columns, trans_table.columns ) logger.info( "Merging SC table and Trans Table with " "{} mapping: {}".format( "sc_table_col: trans_table_col", merge_cols ) ) sc_points = sc_points.rename(columns=merge_cols) merge_cols = list(merge_cols.values()) if isinstance(sc_cols, tuple): sc_cols = list(sc_cols) extra_cols = [SupplyCurveField.CAPACITY_DC_MW, SupplyCurveField.MEAN_CF_DC, SupplyCurveField.MEAN_LCOE_FRICTION, "transmission_multiplier"] for col in extra_cols: if col in sc_points: sc_cols.append(col) sc_cols += merge_cols sc_points = sc_points[sc_cols].copy() trans_sc_table = trans_table.merge( sc_points, on=merge_cols, how="inner" ) return trans_sc_table @classmethod def _map_tables(cls, sc_points, trans_table, sc_cols=(SupplyCurveField.SC_GID, SupplyCurveField.CAPACITY_AC_MW, SupplyCurveField.MEAN_CF_AC, SupplyCurveField.MEAN_LCOE), sc_capacity_col=SupplyCurveField.CAPACITY_AC_MW): """ Map supply curve points to transmission features Parameters ---------- sc_points : pd.DataFrame Table of supply curve point summary trans_table : pd.DataFrame | str Table mapping supply curve points to transmission features (either str filepath to table file, list of filepaths to tables by line voltage (capacity) or pre-loaded DataFrame). sc_cols : tuple | list, optional List of column from sc_points to transfer into the trans table, If the `sc_capacity_col` is not included, it will get added. by default (SupplyCurveField.SC_GID, SupplyCurveField.CAPACITY_AC_MW, SupplyCurveField.MEAN_CF_AC, SupplyCurveField.MEAN_LCOE) sc_capacity_col : str, optional Name of capacity column in `trans_sc_table`. The values in this column determine the size of transmission lines built. The transmission capital costs per MW and the reinforcement costs per MW will be returned in terms of these capacity values. Note that if this column != "capacity", then "capacity" must also be included in `trans_sc_table` since those values match the "mean_cf" data (which is used to calculate LCOT and Total LCOE). By default, ``"capacity"``. Returns ------- trans_sc_table : pd.DataFrame Updated table mapping supply curve points to transmission features. This is performed by an inner merging with trans_table """ scc = sc_capacity_col trans_sc_table = cls._merge_sc_trans_tables( sc_points, trans_table, sc_cols=sc_cols, sc_capacity_col=scc ) if "max_cap" in trans_sc_table: trans_sc_table = cls._map_trans_capacity( trans_sc_table, sc_capacity_col=scc ) sort_cols = [SupplyCurveField.SC_GID, SupplyCurveField.TRANS_GID] trans_sc_table = trans_sc_table.sort_values(sort_cols) trans_sc_table = trans_sc_table.reset_index(drop=True) cls._check_sc_trans_table(sc_points, trans_sc_table) return trans_sc_table @staticmethod def _create_handler(trans_table, trans_costs=None, avail_cap_frac=1): """ Create TransmissionFeatures handler from supply curve transmission mapping table. Update connection costs if given. Parameters ---------- trans_table : str | pandas.DataFrame Path to .csv or .json or DataFrame containing supply curve transmission mapping trans_costs : str | dict Transmission feature costs to use with TransmissionFeatures handler: line_tie_in_cost, line_cost, station_tie_in_cost, center_tie_in_cost, sink_tie_in_cost avail_cap_frac: int, optional Fraction of transmissions features capacity 'ac_cap' to make available for connection to supply curve points, by default 1 Returns ------- trans_features : TransmissionFeatures TransmissionFeatures or TransmissionCosts instance initilized with specified transmission costs """ if trans_costs is not None: kwargs = TF._parse_dictionary(trans_costs) else: kwargs = {} trans_features = TF( trans_table, avail_cap_frac=avail_cap_frac, **kwargs ) return trans_features @staticmethod def _parse_sc_gids(trans_table, gid_key=SupplyCurveField.SC_GID): """Extract unique sc gids, make bool mask from tranmission table Parameters ---------- trans_table : pd.DataFrame reV Supply Curve table joined with transmission features table. gid_key : str Column label in trans_table containing the supply curve points primary key. Returns ------- sc_gids : list List of unique integer supply curve gids (non-nan) mask : np.ndarray Boolean array initialized as true. Length is equal to the maximum SC gid so that the SC gids can be used to index the mask directly. """ sc_gids = list(np.sort(trans_table[gid_key].unique())) sc_gids = [int(gid) for gid in sc_gids] mask = np.ones(int(1 + max(sc_gids)), dtype=bool) return sc_gids, mask @staticmethod def _get_capacity(sc_gid, sc_table, connectable=True, sc_capacity_col=SupplyCurveField.CAPACITY_AC_MW): """ Get capacity of supply curve point Parameters ---------- sc_gid : int Supply curve gid sc_table : pandas.DataFrame DataFrame of sc point to transmission features mapping for given sc_gid connectable : bool, optional Flag to ensure SC point can connect to transmission features, by default True sc_capacity_col : str, optional Name of capacity column in `trans_sc_table`. The values in this column determine the size of transmission lines built. The transmission capital costs per MW and the reinforcement costs per MW will be returned in terms of these capacity values. Note that if this column != "capacity", then "capacity" must also be included in `trans_sc_table` since those values match the "mean_cf" data (which is used to calculate LCOT and Total LCOE). By default, ``"capacity"``. Returns ------- capacity : float Capacity of supply curve point """ if connectable: capacity = sc_table[sc_capacity_col].unique() if len(capacity) == 1: capacity = capacity[0] else: msg = ( "Each supply curve point should only have " "a single capacity, but {} has {}".format(sc_gid, capacity) ) logger.error(msg) raise RuntimeError(msg) else: capacity = None return capacity @classmethod def _compute_trans_cap_cost(cls, trans_table, trans_costs=None, avail_cap_frac=1, max_workers=None, connectable=True, line_limited=False, sc_capacity_col=( SupplyCurveField.CAPACITY_AC_MW)): """ Compute levelized cost of transmission for all combinations of supply curve points and tranmission features in trans_table Parameters ---------- trans_table : pd.DataFrame Table mapping supply curve points to transmission features MUST contain `sc_capacity_col` column. fcr : float Fixed charge rate needed to compute LCOT trans_costs : str | dict Transmission feature costs to use with TransmissionFeatures handler: line_tie_in_cost, line_cost, station_tie_in_cost, center_tie_in_cost, sink_tie_in_cost avail_cap_frac: int, optional Fraction of transmissions features capacity 'ac_cap' to make available for connection to supply curve points, by default 1 max_workers : int | NoneType Number of workers to use to compute lcot, if > 1 run in parallel. None uses all available cpu's. connectable : bool, optional Flag to only compute tranmission capital cost if transmission feature has enough available capacity, by default True line_limited : bool Substation connection is limited by maximum capacity of the attached lines, legacy method sc_capacity_col : str, optional Name of capacity column in `trans_sc_table`. The values in this column determine the size of transmission lines built. The transmission capital costs per MW and the reinforcement costs per MW will be returned in terms of these capacity values. Note that if this column != "capacity", then "capacity" must also be included in `trans_sc_table` since those values match the "mean_cf" data (which is used to calculate LCOT and Total LCOE). By default, ``"capacity"``. Returns ------- lcot : list Levelized cost of transmission for all supply curve - tranmission feature connections cost : list Capital cost of tramsmission for all supply curve - transmission feature connections """ scc = sc_capacity_col if scc not in trans_table: raise SupplyCurveInputError( "Supply curve table must have " "supply curve point capacity column" "({}) to compute lcot".format(scc) ) if trans_costs is not None: trans_costs = TF._parse_dictionary(trans_costs) else: trans_costs = {} if max_workers is None: max_workers = os.cpu_count() logger.info('Computing LCOT costs for all possible connections...') groups = trans_table.groupby(SupplyCurveField.SC_GID) if max_workers > 1: loggers = [__name__, "reV.handlers.transmission", "reV"] with SpawnProcessPool( max_workers=max_workers, loggers=loggers ) as exe: futures = [] for sc_gid, sc_table in groups: capacity = cls._get_capacity( sc_gid, sc_table, connectable=connectable, sc_capacity_col=scc, ) futures.append( exe.submit( TC.feature_costs, sc_table, capacity=capacity, avail_cap_frac=avail_cap_frac, line_limited=line_limited, **trans_costs, ) ) cost = [future.result() for future in futures] else: cost = [] for sc_gid, sc_table in groups: capacity = cls._get_capacity( sc_gid, sc_table, connectable=connectable, sc_capacity_col=scc, ) cost.append( TC.feature_costs( sc_table, capacity=capacity, avail_cap_frac=avail_cap_frac, line_limited=line_limited, **trans_costs, ) ) cost = np.hstack(cost).astype("float32") logger.info("LCOT cost calculation is complete.") return cost
[docs] def compute_total_lcoe( self, fcr, transmission_costs=None, avail_cap_frac=1, line_limited=False, connectable=True, max_workers=None, consider_friction=True, ): """ Compute LCOT and total LCOE for all sc point to transmission feature connections Parameters ---------- fcr : float Fixed charge rate, used to compute LCOT transmission_costs : str | dict, optional Transmission feature costs to use with TransmissionFeatures handler: line_tie_in_cost, line_cost, station_tie_in_cost, center_tie_in_cost, sink_tie_in_cost, by default None avail_cap_frac : int, optional Fraction of transmissions features capacity 'ac_cap' to make available for connection to supply curve points, by default 1 line_limited : bool, optional Flag to have substation connection is limited by maximum capacity of the attached lines, legacy method, by default False connectable : bool, optional Flag to only compute tranmission capital cost if transmission feature has enough available capacity, by default True max_workers : int | NoneType, optional Number of workers to use to compute lcot, if > 1 run in parallel. None uses all available cpu's. by default None consider_friction : bool, optional Flag to consider friction layer on LCOE when "mean_lcoe_friction" is in the sc points input, by default True """ tcc_per_mw_col = SupplyCurveField.TOTAL_TRANS_CAP_COST_PER_MW if tcc_per_mw_col in self._trans_table: cost = self._trans_table[tcc_per_mw_col].values.copy() elif "trans_cap_cost" not in self._trans_table: scc = self._sc_capacity_col cost = self._compute_trans_cap_cost( self._trans_table, trans_costs=transmission_costs, avail_cap_frac=avail_cap_frac, line_limited=line_limited, connectable=connectable, max_workers=max_workers, sc_capacity_col=scc, ) self._trans_table[tcc_per_mw_col] = cost # $/MW else: cost = self._trans_table["trans_cap_cost"].values.copy() # $ cost /= self._trans_table[SupplyCurveField.CAPACITY_AC_MW] # $/MW self._trans_table[tcc_per_mw_col] = cost self._trans_table[tcc_per_mw_col] = ( self._trans_table[tcc_per_mw_col].astype("float32") ) cost = cost.astype("float32") cf_mean_arr = self._trans_table[SupplyCurveField.MEAN_CF_AC] cf_mean_arr = cf_mean_arr.values.astype("float32") resource_lcoe = self._trans_table[SupplyCurveField.MEAN_LCOE] resource_lcoe = resource_lcoe.values.astype("float32") if 'reinforcement_cost_floored_per_mw' in self._trans_table: logger.info("'reinforcement_cost_floored_per_mw' column found in " "transmission table. Adding floored reinforcement " "cost LCOE as sorting option.") fr_cost = (self._trans_table['reinforcement_cost_floored_per_mw'] .values.copy()) lcot_fr = ((cost + fr_cost) * fcr) / (cf_mean_arr * 8760) lcoe_fr = lcot_fr + resource_lcoe self._trans_table['lcot_floored_reinforcement'] = lcot_fr self._trans_table['lcoe_floored_reinforcement'] = lcoe_fr if SupplyCurveField.REINFORCEMENT_COST_PER_MW in self._trans_table: logger.info("%s column found in transmission table. Adding " "reinforcement costs to total LCOE.", SupplyCurveField.REINFORCEMENT_COST_PER_MW) lcot_nr = (cost * fcr) / (cf_mean_arr * 8760) lcoe_nr = lcot_nr + resource_lcoe self._trans_table['lcot_no_reinforcement'] = lcot_nr self._trans_table['lcoe_no_reinforcement'] = lcoe_nr col_name = SupplyCurveField.REINFORCEMENT_COST_PER_MW r_cost = self._trans_table[col_name].astype("float32") r_cost = r_cost.values.copy() self._trans_table[tcc_per_mw_col] += r_cost cost += r_cost # $/MW lcot = (cost * fcr) / (cf_mean_arr * 8760) self._trans_table[SupplyCurveField.LCOT] = lcot self._trans_table[SupplyCurveField.TOTAL_LCOE] = lcot + resource_lcoe if consider_friction: self._calculate_total_lcoe_friction()
def _calculate_total_lcoe_friction(self): """Look for site mean LCOE with friction in the trans table and if found make a total LCOE column with friction.""" if SupplyCurveField.MEAN_LCOE_FRICTION in self._trans_table: lcoe_friction = ( self._trans_table[SupplyCurveField.LCOT] + self._trans_table[SupplyCurveField.MEAN_LCOE_FRICTION]) self._trans_table[SupplyCurveField.TOTAL_LCOE_FRICTION] = ( lcoe_friction ) logger.info('Found mean LCOE with friction. Adding key ' '"total_lcoe_friction" to trans table.') def _exclude_noncompetitive_wind_farms( self, comp_wind_dirs, sc_gid, downwind=False ): """ Exclude non-competitive wind farms for given sc_gid Parameters ---------- comp_wind_dirs : CompetitiveWindFarms Pre-initilized CompetitiveWindFarms instance sc_gid : int Supply curve gid to exclude non-competitive wind farms around downwind : bool, optional Flag to remove downwind neighbors as well as upwind neighbors, by default False Returns ------- comp_wind_dirs : CompetitiveWindFarms updated CompetitiveWindFarms instance """ gid = comp_wind_dirs.check_sc_gid(sc_gid) if gid is not None: if comp_wind_dirs.mask[gid]: exclude_gids = comp_wind_dirs["upwind", gid] if downwind: exclude_gids = np.append( exclude_gids, comp_wind_dirs["downwind", gid] ) for n in exclude_gids: check = comp_wind_dirs.exclude_sc_point_gid(n) if check: sc_gids = comp_wind_dirs[SupplyCurveField.SC_GID, n] for sc_id in sc_gids: if self._mask[sc_id]: logger.debug( "Excluding sc_gid {}".format(sc_id) ) self._mask[sc_id] = False return comp_wind_dirs
[docs] @staticmethod def add_sum_cols(table, sum_cols): """Add a summation column to table. Parameters ---------- table : pd.DataFrame Supply curve table. sum_cols : dict Mapping of new column label(s) to multiple column labels to sum. Example: sum_col={'total_cap_cost': ['cap_cost1', 'cap_cost2']} Which would add a new 'total_cap_cost' column which would be the sum of 'cap_cost1' and 'cap_cost2' if they are present in table. Returns ------- table : pd.DataFrame Supply curve table with additional summation columns. """ for new_label, sum_labels in sum_cols.items(): missing = [s for s in sum_labels if s not in table] if any(missing): logger.info( 'Could not make sum column "{}", missing: {}'.format( new_label, missing ) ) else: sum_arr = np.zeros(len(table)) for s in sum_labels: temp = table[s].values temp[np.isnan(temp)] = 0 sum_arr += temp table[new_label] = sum_arr return table
def _full_sort( # noqa: C901 self, trans_table, trans_costs=None, avail_cap_frac=1, comp_wind_dirs=None, total_lcoe_fric=None, sort_on=SupplyCurveField.TOTAL_LCOE, columns=( SupplyCurveField.TRANS_GID, SupplyCurveField.TRANS_CAPACITY, SupplyCurveField.TRANS_TYPE, SupplyCurveField.TOTAL_TRANS_CAP_COST_PER_MW, SupplyCurveField.DIST_SPUR_KM, SupplyCurveField.LCOT, SupplyCurveField.TOTAL_LCOE, ), downwind=False, ): """ Internal method to handle full supply curve sorting Parameters ---------- trans_table : pandas.DataFrame Supply Curve Tranmission table to sort on trans_costs : str | dict, optional Transmission feature costs to use with TransmissionFeatures handler: line_tie_in_cost, line_cost, station_tie_in_cost, center_tie_in_cost, sink_tie_in_cost, by default None avail_cap_frac : int, optional Fraction of transmissions features capacity 'ac_cap' to make available for connection to supply curve points, by default 1 comp_wind_dirs : CompetitiveWindFarms, optional Pre-initilized CompetitiveWindFarms instance, by default None total_lcoe_fric : ndarray, optional Vector of lcoe friction values, by default None sort_on : str, optional Column label to sort the Supply Curve table on. This affects the build priority - connections with the lowest value in this column will be built first, by default 'total_lcoe' columns : tuple, optional Columns to preserve in output connections dataframe, by default ('trans_gid', 'trans_capacity', 'trans_type', 'trans_cap_cost_per_mw', 'dist_km', 'lcot', 'total_lcoe') downwind : bool, optional Flag to remove downwind neighbors as well as upwind neighbors, by default False Returns ------- supply_curve : pandas.DataFrame Updated sc_points table with transmission connections, LCOT and LCOE+LCOT based on full supply curve connections """ trans_features = self._create_handler( self._trans_table, trans_costs=trans_costs, avail_cap_frac=avail_cap_frac, ) init_list = [np.nan] * int(1 + np.max(self._sc_gids)) columns = list(columns) if sort_on not in columns: columns.append(sort_on) conn_lists = {k: deepcopy(init_list) for k in columns} trans_sc_gids = trans_table[SupplyCurveField.SC_GID].values.astype(int) # syntax is final_key: source_key (source from trans_table) all_cols = list(columns) essentials = [SupplyCurveField.TRANS_GID, SupplyCurveField.TRANS_CAPACITY, SupplyCurveField.TRANS_TYPE, SupplyCurveField.DIST_SPUR_KM, SupplyCurveField.TOTAL_TRANS_CAP_COST_PER_MW, SupplyCurveField.LCOT, SupplyCurveField.TOTAL_LCOE] for col in essentials: if col not in all_cols: all_cols.append(col) arrays = {col: trans_table[col].values for col in all_cols} sc_capacities = trans_table[self._sc_capacity_col].values connected = 0 progress = 0 for i in range(len(trans_table)): sc_gid = trans_sc_gids[i] if self._mask[sc_gid]: connect = trans_features.connect( arrays[SupplyCurveField.TRANS_GID][i], sc_capacities[i] ) if connect: connected += 1 logger.debug("Connecting sc gid {}".format(sc_gid)) self._mask[sc_gid] = False for col_name, data_arr in arrays.items(): conn_lists[col_name][sc_gid] = data_arr[i] if total_lcoe_fric is not None: col_name = SupplyCurveField.TOTAL_LCOE_FRICTION conn_lists[col_name][sc_gid] = total_lcoe_fric[i] current_prog = connected // (len(self) / 100) if current_prog > progress: progress = current_prog logger.info( "{} % of supply curve points connected".format( progress ) ) if comp_wind_dirs is not None: comp_wind_dirs = ( self._exclude_noncompetitive_wind_farms( comp_wind_dirs, sc_gid, downwind=downwind ) ) index = range(0, int(1 + np.max(self._sc_gids))) connections = pd.DataFrame(conn_lists, index=index) connections.index.name = SupplyCurveField.SC_GID connections = connections.dropna(subset=[sort_on]) connections = connections[columns].reset_index() sc_gids = self._sc_points[SupplyCurveField.SC_GID].values connected = connections[SupplyCurveField.SC_GID].values logger.debug('Connected gids {} out of total supply curve gids {}' .format(len(connected), len(sc_gids))) unconnected = ~np.isin(sc_gids, connected) unconnected = sc_gids[unconnected].tolist() if unconnected: msg = ( "{} supply curve points were not connected to tranmission! " "Unconnected sc_gid's: {}".format( len(unconnected), unconnected ) ) logger.warning(msg) warn(msg) supply_curve = self._sc_points.merge( connections, on=SupplyCurveField.SC_GID) return supply_curve.reset_index(drop=True) def _check_feature_capacity(self, avail_cap_frac=1): """ Add the transmission connection feature capacity to the trans table if needed """ if SupplyCurveField.TRANS_CAPACITY not in self._trans_table: kwargs = {"avail_cap_frac": avail_cap_frac} fc = TF.feature_capacity(self._trans_table, **kwargs) self._trans_table = self._trans_table.merge( fc, on=SupplyCurveField.TRANS_GID) def _adjust_output_columns(self, columns, consider_friction): """Add extra output columns, if needed.""" for col in _REQUIRED_COMPUTE_AND_OUTPUT_COLS: if col not in columns: columns.append(col) for col in _REQUIRED_OUTPUT_COLS: if col not in self._trans_table: self._trans_table[col] = np.nan if col not in columns: columns.append(col) missing_cols = [col for col in columns if col not in self._trans_table] if missing_cols: msg = (f"The following requested columns are not found in " f"transmission table: {missing_cols}.\nSkipping...") logger.warning(msg) warn(msg) columns = [col for col in columns if col in self._trans_table] fric_col = SupplyCurveField.TOTAL_LCOE_FRICTION if consider_friction and fric_col in self._trans_table: columns.append(fric_col) return sorted(columns, key=_column_sort_key) def _determine_sort_on(self, sort_on): """Determine the `sort_on` column from user input and trans table""" r_cost_col = SupplyCurveField.REINFORCEMENT_COST_PER_MW found_reinforcement_costs = ( r_cost_col in self._trans_table and not self._trans_table[r_cost_col].isna().all() ) if found_reinforcement_costs: sort_on = sort_on or "lcoe_no_reinforcement" return sort_on or SupplyCurveField.TOTAL_LCOE
[docs] def full_sort( self, fcr, transmission_costs=None, avail_cap_frac=1, line_limited=False, connectable=True, max_workers=None, consider_friction=True, sort_on=None, columns=( SupplyCurveField.TRANS_GID, SupplyCurveField.TRANS_CAPACITY, SupplyCurveField.TRANS_TYPE, SupplyCurveField.TOTAL_TRANS_CAP_COST_PER_MW, SupplyCurveField.DIST_SPUR_KM, SupplyCurveField.LCOT, SupplyCurveField.TOTAL_LCOE, ), wind_dirs=None, n_dirs=2, downwind=False, offshore_compete=False, ): """ run full supply curve sorting Parameters ---------- fcr : float Fixed charge rate, used to compute LCOT transmission_costs : str | dict, optional Transmission feature costs to use with TransmissionFeatures handler: line_tie_in_cost, line_cost, station_tie_in_cost, center_tie_in_cost, sink_tie_in_cost, by default None avail_cap_frac : int, optional Fraction of transmissions features capacity 'ac_cap' to make available for connection to supply curve points, by default 1 line_limited : bool, optional Flag to have substation connection is limited by maximum capacity of the attached lines, legacy method, by default False connectable : bool, optional Flag to only compute tranmission capital cost if transmission feature has enough available capacity, by default True max_workers : int | NoneType, optional Number of workers to use to compute lcot, if > 1 run in parallel. None uses all available cpu's. by default None consider_friction : bool, optional Flag to consider friction layer on LCOE when "mean_lcoe_friction" is in the sc points input, by default True sort_on : str, optional Column label to sort the Supply Curve table on. This affects the build priority - connections with the lowest value in this column will be built first, by default `None`, which will use total LCOE without any reinforcement costs as the sort value. columns : list | tuple, optional Columns to preserve in output connections dataframe, by default ('trans_gid', 'trans_capacity', 'trans_type', 'trans_cap_cost_per_mw', 'dist_km', 'lcot', 'total_lcoe') wind_dirs : pandas.DataFrame | str, optional path to .csv or reVX.wind_dirs.wind_dirs.WindDirs output with the neighboring supply curve point gids and power-rose value at each cardinal direction, by default None n_dirs : int, optional Number of prominent directions to use, by default 2 downwind : bool, optional Flag to remove downwind neighbors as well as upwind neighbors, by default False offshore_compete : bool, default Flag as to whether offshore farms should be included during CompetitiveWindFarms, by default False Returns ------- supply_curve : pandas.DataFrame Updated sc_points table with transmission connections, LCOT and LCOE+LCOT based on full supply curve connections """ logger.info("Starting full competitive supply curve sort.") self._check_substation_conns(self._trans_table) self.compute_total_lcoe( fcr, transmission_costs=transmission_costs, avail_cap_frac=avail_cap_frac, line_limited=line_limited, connectable=connectable, max_workers=max_workers, consider_friction=consider_friction, ) self._check_feature_capacity(avail_cap_frac=avail_cap_frac) if isinstance(columns, tuple): columns = list(columns) columns = self._adjust_output_columns(columns, consider_friction) sort_on = self._determine_sort_on(sort_on) trans_table = self._trans_table.copy() pos = trans_table[SupplyCurveField.LCOT].isnull() trans_table = trans_table.loc[~pos].sort_values( [sort_on, SupplyCurveField.TRANS_GID] ) total_lcoe_fric = None col_in_table = SupplyCurveField.MEAN_LCOE_FRICTION in trans_table if consider_friction and col_in_table: total_lcoe_fric = \ trans_table[SupplyCurveField.TOTAL_LCOE_FRICTION].values comp_wind_dirs = None if wind_dirs is not None: msg = "Excluding {} upwind".format(n_dirs) if downwind: msg += " and downwind" msg += " onshore" if offshore_compete: msg += " and offshore" msg += " windfarms" logger.info(msg) comp_wind_dirs = CompetitiveWindFarms( wind_dirs, self._sc_points, n_dirs=n_dirs, offshore=offshore_compete, ) supply_curve = self._full_sort( trans_table, trans_costs=transmission_costs, avail_cap_frac=avail_cap_frac, comp_wind_dirs=comp_wind_dirs, total_lcoe_fric=total_lcoe_fric, sort_on=sort_on, columns=columns, downwind=downwind, ) return supply_curve
[docs] def simple_sort( self, fcr, transmission_costs=None, avail_cap_frac=1, max_workers=None, consider_friction=True, sort_on=None, columns=DEFAULT_COLUMNS, wind_dirs=None, n_dirs=2, downwind=False, offshore_compete=False, ): """ Run simple supply curve sorting that does not take into account available capacity Parameters ---------- fcr : float Fixed charge rate, used to compute LCOT transmission_costs : str | dict, optional Transmission feature costs to use with TransmissionFeatures handler: line_tie_in_cost, line_cost, station_tie_in_cost, center_tie_in_cost, sink_tie_in_cost, by default None avail_cap_frac : int, optional Fraction of transmissions features capacity 'ac_cap' to make available for connection to supply curve points, by default 1 line_limited : bool, optional Flag to have substation connection is limited by maximum capacity of the attached lines, legacy method, by default False connectable : bool, optional Flag to only compute tranmission capital cost if transmission feature has enough available capacity, by default True max_workers : int | NoneType, optional Number of workers to use to compute lcot, if > 1 run in parallel. None uses all available cpu's. by default None consider_friction : bool, optional Flag to consider friction layer on LCOE when "mean_lcoe_friction" is in the sc points input, by default True sort_on : str, optional Column label to sort the Supply Curve table on. This affects the build priority - connections with the lowest value in this column will be built first, by default `None`, which will use total LCOE without any reinforcement costs as the sort value. columns : list | tuple, optional Columns to preserve in output connections dataframe. By default, :obj:`DEFAULT_COLUMNS`. wind_dirs : pandas.DataFrame | str, optional path to .csv or reVX.wind_dirs.wind_dirs.WindDirs output with the neighboring supply curve point gids and power-rose value at each cardinal direction, by default None n_dirs : int, optional Number of prominent directions to use, by default 2 downwind : bool, optional Flag to remove downwind neighbors as well as upwind neighbors offshore_compete : bool, default Flag as to whether offshore farms should be included during CompetitiveWindFarms, by default False Returns ------- supply_curve : pandas.DataFrame Updated sc_points table with transmission connections, LCOT and LCOE+LCOT based on simple supply curve connections """ logger.info("Starting simple supply curve sort (no capacity limits).") self.compute_total_lcoe( fcr, transmission_costs=transmission_costs, avail_cap_frac=avail_cap_frac, connectable=False, max_workers=max_workers, consider_friction=consider_friction, ) sort_on = self._determine_sort_on(sort_on) if isinstance(columns, tuple): columns = list(columns) columns = self._adjust_output_columns(columns, consider_friction) trans_table = self._trans_table.copy() connections = trans_table.sort_values( [sort_on, SupplyCurveField.TRANS_GID]) connections = connections.groupby(SupplyCurveField.SC_GID).first() connections = connections[columns].reset_index() supply_curve = self._sc_points.merge(connections, on=SupplyCurveField.SC_GID) if wind_dirs is not None: supply_curve = CompetitiveWindFarms.run( wind_dirs, supply_curve, n_dirs=n_dirs, offshore=offshore_compete, sort_on=sort_on, downwind=downwind, ) supply_curve = supply_curve.reset_index(drop=True) return supply_curve
[docs] def run( self, out_fpath, fixed_charge_rate, simple=True, avail_cap_frac=1, line_limited=False, transmission_costs=None, consider_friction=True, sort_on=None, columns=DEFAULT_COLUMNS, max_workers=None, competition=None, ): """Run Supply Curve Transmission calculations. Run full supply curve taking into account available capacity of tranmission features when making connections. Parameters ---------- out_fpath : str Full path to output CSV file. Does not need to include file ending - it will be added automatically if missing. fixed_charge_rate : float Fixed charge rate, (in decimal form: 5% = 0.05). This value is used to compute LCOT. simple : bool, optional Option to run the simple sort (does not keep track of capacity available on the existing transmission grid). If ``False``, a full transmission sort (where connections are limited based on available transmission capacity) is run. Note that the full transmission sort requires the `avail_cap_frac` and `line_limited` inputs. By default, ``True``. avail_cap_frac : int, optional This input has no effect if ``simple=True``. Fraction of transmissions features capacity ``ac_cap`` to make available for connection to supply curve points. By default, ``1``. line_limited : bool, optional This input has no effect if ``simple=True``. Flag to have substation connection limited by maximum capacity of the attached lines. This is a legacy method. By default, ``False``. transmission_costs : str | dict, optional Dictionary of transmission feature costs or path to JSON file containing a dictionary of transmission feature costs. These costs are used to compute transmission capital cost if the input transmission tables do not have a ``"trans_cap_cost"`` column (this input is ignored otherwise). The dictionary must include: - line_tie_in_cost - line_cost - station_tie_in_cost - center_tie_in_cost - sink_tie_in_cost By default, ``None``. consider_friction : bool, optional Flag to add a new ``"total_lcoe_friction"`` column to the supply curve output that contains the sum of the computed ``"total_lcoe"`` value and the input ``"mean_lcoe_friction"`` values. If ``"mean_lcoe_friction"`` is not in the `sc_points` input, this option is ignored. By default, ``True``. sort_on : str, optional Column label to sort the supply curve table on. This affects the build priority when doing a "full" sort - connections with the lowest value in this column will be built first. For a "simple" sort, only connections with the lowest value in this column will be considered. If ``None``, the sort is performed on the total LCOE *without* any reinforcement costs added (this is typically what you want - it avoids unrealistically long spur-line connections). By default ``None``. columns : list | tuple, optional Columns to preserve in output supply curve dataframe. By default, :obj:`DEFAULT_COLUMNS`. max_workers : int, optional Number of workers to use to compute LCOT. If > 1, computation is run in parallel. If ``None``, computation uses all available CPU's. By default, ``None``. competition : dict, optional Optional dictionary of arguments for competitive wind farm exclusions, which removes supply curve points upwind (and optionally downwind) of the lowest LCOE supply curves. If ``None``, no competition is applied. Otherwise, this dictionary can have up to four keys: - ``wind_dirs`` (required) : A path to a CSV file or :py:class:`reVX ProminentWindDirections <reVX.wind_dirs.prominent_wind_dirs.ProminentWindDirections>` output with the neighboring supply curve point gids and power-rose values at each cardinal direction. - ``n_dirs`` (optional) : An integer representing the number of prominent directions to use during wind farm competition. By default, ``2``. - ``downwind`` (optional) : A flag indicating that downwind neighbors should be removed in addition to upwind neighbors during wind farm competition. By default, ``False``. - ``offshore_compete`` (optional) : A flag indicating that offshore farms should be included during wind farm competition. By default, ``False``. By default ``None``. Returns ------- str Path to output supply curve. """ kwargs = { "fcr": fixed_charge_rate, "transmission_costs": transmission_costs, "consider_friction": consider_friction, "sort_on": sort_on, "columns": columns, "max_workers": max_workers, } kwargs.update(competition or {}) if simple: supply_curve = self.simple_sort(**kwargs) else: kwargs["avail_cap_frac"] = avail_cap_frac kwargs["line_limited"] = line_limited supply_curve = self.full_sort(**kwargs) out_fpath = _format_sc_out_fpath(out_fpath) supply_curve.to_csv(out_fpath, index=False) return out_fpath
def _format_sc_out_fpath(out_fpath): """Add CSV file ending and replace underscore, if necessary.""" if not out_fpath.endswith(".csv"): out_fpath = "{}.csv".format(out_fpath) project_dir, out_fn = os.path.split(out_fpath) out_fn = out_fn.replace("supply_curve", "supply-curve") return os.path.join(project_dir, out_fn) def _column_sort_key(col): """Determine the sort order of the input column. """ col_value = _REQUIRED_COMPUTE_AND_OUTPUT_COLS.get(col) if col_value is None: col_value = _REQUIRED_OUTPUT_COLS.get(col) if col_value is None: col_value = 1e6 return col_value, str(col)