reV.losses.scheduled.ScheduledLossesMixin
- class ScheduledLossesMixin[source]
Bases:
object
Mixin class for
reV.SAM.generation.AbstractSamGeneration
.Warning
Using this class for anything except as a mixin for
AbstractSamGeneration
may result in unexpected results and/or errors.Methods
add_scheduled_losses
([resource])Add stochastically scheduled losses to SAM config file.
Attributes
Specify outage information in the config file using this key.
Specify a randomizer seed in the config file using this key.
A value to use as the seed for the outage losses.
- OUTAGE_CONFIG_KEY = 'reV_outages'
Specify outage information in the config file using this key.
- OUTAGE_SEED_CONFIG_KEY = 'reV_outages_seed'
Specify a randomizer seed in the config file using this key.
- add_scheduled_losses(resource=None)[source]
Add stochastically scheduled losses to SAM config file.
This function reads the information in the
reV_outages
key of thesam_sys_inputs
dictionary and computes stochastically scheduled losses from that input. If the value forreV_outages
is a string, it must have been generated by callingjson.dumps()
on the list of dictionaries containing outage specifications. Otherwise, the outage information is expected to be a list of dictionaries containing outage specifications. SeeOutage
for a description of the specifications allowed for each outage. The scheduled losses are passed to SAM via thehourly
key to signify which hourly capacity factors should be adjusted with outage losses. If no outage info is specified insam_sys_inputs
, no scheduled losses are added.- Parameters:
resource (pd.DataFrame, optional) – Time series resource data for a single location with a pandas DatetimeIndex. The
year
value of the index will be used to seed the stochastically scheduled losses. If None, no yearly seed will be used.
See also
Outage
Single outage specification.
Notes
The scheduled losses are passed to SAM via the
hourly
key to signify which hourly capacity factors should be adjusted with outage losses. If the user specifies other hourly adjustment factors via thehourly
key, the effect is combined. For example, if the user inputs a 33% hourly adjustment factor and reV schedules an outage for 70% of the farm down for the same hour, then the resulting adjustment factor isThis means the generation will be reduced by ~80%, because the user requested 33% losses for the 30% the farm that remained operational during the scheduled outage (i.e. 20% remaining of the original generation).