Source code for reV.generation.generation

# -*- coding: utf-8 -*-
"""
reV generation module.
"""

import copy
import json
import logging
import os
import pprint

import numpy as np
import pandas as pd
from rex.multi_file_resource import MultiFileResource
from rex.multi_res_resource import MultiResolutionResource
from rex.resource import Resource
from rex.utilities.utilities import check_res_file

from reV.generation.base import BaseGen
from reV.SAM.generation import (
    Geothermal,
    LinearDirectSteam,
    MhkWave,
    PvSamv1,
    PvWattsv5,
    PvWattsv7,
    PvWattsv8,
    SolarWaterHeat,
    TcsMoltenSalt,
    TroughPhysicalHeat,
    WindPower,
)
from reV.utilities import ModuleName, ResourceMetaField, SupplyCurveField
from reV.utilities.exceptions import (
    ConfigError,
    InputError,
    ProjectPointsValueError,
)

logger = logging.getLogger(__name__)


ATTR_DIR = os.path.dirname(os.path.realpath(__file__))
ATTR_DIR = os.path.join(ATTR_DIR, "output_attributes")
with open(os.path.join(ATTR_DIR, "other.json")) as f:
    OTHER_ATTRS = json.load(f)
with open(os.path.join(ATTR_DIR, "generation.json")) as f:
    GEN_ATTRS = json.load(f)
with open(os.path.join(ATTR_DIR, "linear_fresnel.json")) as f:
    LIN_ATTRS = json.load(f)
with open(os.path.join(ATTR_DIR, "solar_water_heat.json")) as f:
    SWH_ATTRS = json.load(f)
with open(os.path.join(ATTR_DIR, "trough_heat.json")) as f:
    TPPH_ATTRS = json.load(f)


[docs]class Gen(BaseGen): """Gen""" # Mapping of reV technology strings to SAM generation objects OPTIONS = { "geothermal": Geothermal, "lineardirectsteam": LinearDirectSteam, "mhkwave": MhkWave, "pvsamv1": PvSamv1, "pvwattsv5": PvWattsv5, "pvwattsv7": PvWattsv7, "pvwattsv8": PvWattsv8, "solarwaterheat": SolarWaterHeat, "tcsmoltensalt": TcsMoltenSalt, "troughphysicalheat": TroughPhysicalHeat, "windpower": WindPower, } """reV technology options.""" # Mapping of reV generation outputs to scale factors and units. # Type is scalar or array and corresponds to the SAM single-site output OUT_ATTRS = copy.deepcopy(OTHER_ATTRS) OUT_ATTRS.update(GEN_ATTRS) OUT_ATTRS.update(LIN_ATTRS) OUT_ATTRS.update(SWH_ATTRS) OUT_ATTRS.update(TPPH_ATTRS) OUT_ATTRS.update(BaseGen.ECON_ATTRS) def __init__( self, technology, project_points, sam_files, resource_file, low_res_resource_file=None, output_request=("cf_mean",), site_data=None, curtailment=None, gid_map=None, drop_leap=False, sites_per_worker=None, memory_utilization_limit=0.4, scale_outputs=True, write_mapped_gids=False, bias_correct=None, ): """ReV generation analysis class. ``reV`` generation analysis runs SAM simulations by piping in renewable energy resource data (usually from the NSRDB or WTK), loading the SAM config, and then executing the PySAM compute module for a given technology. See the documentation for the ``reV`` SAM class (e.g. :class:`reV.SAM.generation.WindPower`, :class:`reV.SAM.generation.PvWattsv8`, :class:`reV.SAM.generation.Geothermal`, etc.) for info on the allowed and/or required SAM config file inputs. If economic parameters are supplied in the SAM config, then you can bundle a "follow-on" econ calculation by just adding the desired econ output keys to the `output_request`. You can request ``reV`` to run the analysis for one or more "sites", which correspond to the meta indices in the resource data (also commonly called the ``gid's``). Examples -------- The following is an example of the most simple way to run reV generation. Note that the ``TESTDATADIR`` refers to the local cloned repository and will need to be replaced with a valid path if you installed ``reV`` via a simple pip install. >>> import os >>> from reV import Gen, TESTDATADIR >>> >>> sam_tech = 'pvwattsv8' >>> sites = 0 >>> fp_sam = os.path.join(TESTDATADIR, 'SAM/naris_pv_1axis_inv13.json') >>> fp_res = os.path.join(TESTDATADIR, 'nsrdb/ri_100_nsrdb_2013.h5') >>> >>> gen = Gen(sam_tech, sites, fp_sam, fp_res) >>> gen.run() >>> >>> gen.out {'cf_mean': array([0.16966143], dtype=float32)} >>> >>> sites = [3, 4, 7, 9] >>> req = ('cf_mean', 'lcoe_fcr') >>> gen = Gen(sam_tech, sites, fp_sam, fp_res, output_request=req) >>> gen.run() >>> >>> gen.out {'fixed_charge_rate': array([0.096, 0.096, 0.096, 0.096], 'base_capital_cost': array([39767200, 39767200, 39767200, 39767200], 'base_variable_operating_cost': array([0, 0, 0, 0], 'base_fixed_operating_cost': array([260000, 260000, 260000, 260000], 'capital_cost': array([39767200, 39767200, 39767200, 39767200], 'fixed_operating_cost': array([260000, 260000, 260000, 260000], 'variable_operating_cost': array([0, 0, 0, 0], 'capital_cost_multiplier': array([1, 1, 1, 1], 'cf_mean': array([0.17859147, 0.17869979, 0.1834818 , 0.18646291], 'lcoe_fcr': array([130.32126, 130.24226, 126.84782, 124.81981]} Parameters ---------- technology : str String indicating which SAM technology to analyze. Must be one of the keys of :attr:`~reV.generation.generation.Gen.OPTIONS`. The string should be lower-cased with spaces and underscores removed. project_points : int | list | tuple | str | dict | pd.DataFrame | slice Input specifying which sites to process. A single integer representing the generation GID of a site may be specified to evaluate reV at a single location. A list or tuple of integers (or slice) representing the generation GIDs of multiple sites can be specified to evaluate reV at multiple specific locations. A string pointing to a project points CSV file may also be specified. Typically, the CSV contains the following columns: - ``gid``: Integer specifying the generation GID of each site. - ``config``: Key in the `sam_files` input dictionary (see below) corresponding to the SAM configuration to use for each particular site. This value can also be ``None`` (or left out completely) if you specify only a single SAM configuration file as the `sam_files` input. - ``capital_cost_multiplier``: This is an *optional* multiplier input that, if included, will be used to regionally scale the ``capital_cost`` input in the SAM config. If you include this column in your CSV, you *do not* need to specify ``capital_cost``, unless you would like that value to vary regionally and independently of the multiplier (i.e. the multiplier will still be applied on top of the ``capital_cost`` input). The CSV file may also contain other site-specific inputs by including a column named after a config keyword (e.g. a column called ``wind_turbine_rotor_diameter`` may be included to specify a site-specific turbine diameter for each location). Columns that do not correspond to a config key may also be included, but they will be ignored. A DataFrame following the same guidelines as the CSV input (or a dictionary that can be used to initialize such a DataFrame) may be used for this input as well. .. Note:: By default, the generation GID of each site is assumed to match the resource GID to be evaluated for that site. However, unique generation GID's can be mapped to non-unique resource GID's via the `gid_map` input (see the documentation for `gid_map` for more details). sam_files : dict | str A dictionary mapping SAM input configuration ID(s) to SAM configuration(s). Keys are the SAM config ID(s) which correspond to the ``config`` column in the project points CSV. Values for each key are either a path to a corresponding SAM config file or a full dictionary of SAM config inputs. For example:: sam_files = { "default": "/path/to/default/sam.json", "onshore": "/path/to/onshore/sam_config.yaml", "offshore": { "sam_key_1": "sam_value_1", "sam_key_2": "sam_value_2", ... }, ... } This input can also be a string pointing to a single SAM config file. In this case, the ``config`` column of the CSV points input should be set to ``None`` or left out completely. See the documentation for the ``reV`` SAM class (e.g. :class:`reV.SAM.generation.WindPower`, :class:`reV.SAM.generation.PvWattsv8`, :class:`reV.SAM.generation.Geothermal`, etc.) for info on the allowed and/or required SAM config file inputs. resource_file : str Filepath to resource data. This input can be path to a single resource HDF5 file or a path including a wildcard input like ``/h5_dir/prefix*suffix`` (i.e. if your datasets for a single year are spread out over multiple files). In all cases, the resource data must be readable by :py:class:`rex.resource.Resource` or :py:class:`rex.multi_file_resource.MultiFileResource`. (i.e. the resource data conform to the `rex data format <https://tinyurl.com/3fy7v5kx>`_). This means the data file(s) must contain a 1D ``time_index`` dataset indicating the UTC time of observation, a 1D ``meta`` dataset represented by a DataFrame with site-specific columns, and 2D resource datasets that match the dimensions of (``time_index``, ``meta``). The time index must start at 00:00 of January 1st of the year under consideration, and its shape must be a multiple of 8760. .. Note:: If executing ``reV`` from the command line, this input string can contain brackets ``{}`` that will be filled in by the `analysis_years` input. Alternatively, this input can be a list of explicit files to process. In this case, the length of the list must match the length of the `analysis_years` input exactly, and the path are assumed to align with the `analysis_years` (i.e. the first path corresponds to the first analysis year, the second path corresponds to the second analysis year, and so on). .. Important:: If you are using custom resource data (i.e. not NSRDB/WTK/Sup3rCC, etc.), ensure the following: - The data conforms to the `rex data format <https://tinyurl.com/3fy7v5kx>`_. - The ``meta`` DataFrame is organized such that every row is a pixel and at least the columns ``latitude``, ``longitude``, ``timezone``, and ``elevation`` are given for each location. - The time index and associated temporal data is in UTC. - The latitude is between -90 and 90 and longitude is between -180 and 180. - For solar data, ensure the DNI/DHI are not zero. You can calculate one of these these inputs from the other using the relationship .. math:: GHI = DNI * cos(SZA) + DHI low_res_resource_file : str, optional Optional low resolution resource file that will be dynamically mapped+interpolated to the nominal-resolution `resource_file`. This needs to be of the same format as `resource_file` - both files need to be handled by the same ``rex Resource`` handler (e.g. ``WindResource``). All of the requirements from the `resource_file` apply to this input as well. If ``None``, no dynamic mapping to higher resolutions is performed. By default, ``None``. output_request : list | tuple, optional List of output variables requested from SAM. Can be any of the parameters in the "Outputs" group of the PySAM module (e.g. :py:class:`PySAM.Windpower.Windpower.Outputs`, :py:class:`PySAM.Pvwattsv8.Pvwattsv8.Outputs`, :py:class:`PySAM.Geothermal.Geothermal.Outputs`, etc.) being executed. This list can also include a select number of SAM config/resource parameters to include in the output: any key in any of the `output attribute JSON files <https://tinyurl.com/4bmrpe3j/>`_ may be requested. If ``cf_mean`` is not included in this list, it will automatically be added. Time-series profiles requested via this input are output in UTC. .. Note:: If you are performing ``reV`` solar runs using ``PVWatts`` and would like ``reV`` to include AC capacity values in your aggregation/supply curves, then you must include the ``"dc_ac_ratio"`` time series as an output in `output_request` when running ``reV`` generation. The AC capacity outputs will automatically be added during the aggregation/supply curve step if the ``"dc_ac_ratio"`` dataset is detected in the generation file. By default, ``('cf_mean',)``. site_data : str | pd.DataFrame, optional Site-specific input data for SAM calculation. If this input is a string, it should be a path that points to a CSV file. Otherwise, this input should be a DataFrame with pre-extracted site data. Rows in this table should match the input sites via a ``gid`` column. The rest of the columns should match configuration input keys that will take site-specific values. Note that some or all site-specific inputs can be specified via the `project_points` input table instead. If ``None``, no site-specific data is considered. .. Note:: This input is often used to provide site-based regional capital cost multipliers. ``reV`` does not ingest multipliers directly; instead, this file is expected to have a ``capital_cost`` column that gives the multiplier-adjusted capital cost value for each location. Therefore, you *must* re-create this input file every time you change your base capital cost assumption. By default, ``None``. curtailment : dict | str, optional Inputs for curtailment parameters, which can be: - Explicit namespace of curtailment variables (dict) - Pointer to curtailment config file with path (str) The allowed key-value input pairs in the curtailment configuration are documented as properties of the :class:`reV.config.curtailment.Curtailment` class. If ``None``, no curtailment is modeled. By default, ``None``. gid_map : dict | str, optional Mapping of unique integer generation gids (keys) to single integer resource gids (values). This enables unique generation gids in the project points to map to non-unique resource gids, which can be useful when evaluating multiple resource datasets in ``reV`` (e.g., forecasted ECMWF resource data to complement historical WTK meteorology). This input can be a pre-extracted dictionary or a path to a JSON or CSV file. If this input points to a CSV file, the file must have the columns ``gid`` (which matches the project points) and ``gid_map`` (gids to extract from the resource input). If ``None``, the GID values in the project points are assumed to match the resource GID values. By default, ``None``. drop_leap : bool, optional Drop leap day instead of final day of year when handling leap years. By default, ``False``. sites_per_worker : int, optional Number of sites to run in series on a worker. ``None`` defaults to the resource file chunk size. By default, ``None``. memory_utilization_limit : float, optional Memory utilization limit (fractional). Must be a value between 0 and 1. This input sets how many site results will be stored in-memory at any given time before flushing to disk. By default, ``0.4``. scale_outputs : bool, optional Flag to scale outputs in-place immediately upon ``Gen`` returning data. By default, ``True``. write_mapped_gids : bool, optional Option to write mapped gids to output meta instead of resource gids. By default, ``False``. bias_correct : str | pd.DataFrame, optional Optional DataFrame or CSV filepath to a wind or solar resource bias correction table. This has columns: - ``gid``: GID of site (can be index name of dataframe) - ``method``: function name from ``rex.bias_correction`` module The ``gid`` field should match the true resource ``gid`` regardless of the optional ``gid_map`` input. Only ``windspeed`` **or** ``GHI`` + ``DNI`` + ``DHI`` are corrected, depending on the technology (wind for the former, PV or CSP for the latter). See the functions in the ``rex.bias_correction`` module for available inputs for ``method``. Any additional kwargs required for the requested ``method`` can be input as additional columns in the ``bias_correct`` table e.g., for linear bias correction functions you can include ``scalar`` and ``adder`` inputs as columns in the ``bias_correct`` table on a site-by-site basis. If ``None``, no corrections are applied. By default, ``None``. """ pc = self.get_pc( points=project_points, points_range=None, sam_configs=sam_files, tech=technology, sites_per_worker=sites_per_worker, res_file=resource_file, curtailment=curtailment, ) super().__init__( pc, output_request, site_data=site_data, drop_leap=drop_leap, memory_utilization_limit=memory_utilization_limit, scale_outputs=scale_outputs, ) if self.tech not in self.OPTIONS: msg = ( 'Requested technology "{}" is not available. ' "reV generation can analyze the following " "SAM technologies: {}".format( self.tech, list(self.OPTIONS.keys()) ) ) logger.error(msg) raise KeyError(msg) self.write_mapped_gids = write_mapped_gids self._res_file = resource_file self._lr_res_file = low_res_resource_file self._sam_module = self.OPTIONS[self.tech] self._run_attrs["sam_module"] = self._sam_module.MODULE self._run_attrs["res_file"] = resource_file self._multi_h5_res, self._hsds = check_res_file(resource_file) self._gid_map = self._parse_gid_map(gid_map) self._nn_map = self._parse_nn_map() self._bc = self._parse_bc(bias_correct) @property def res_file(self): """Get the resource filename and path. Returns ------- res_file : str Filepath to single resource file, multi-h5 directory, or /h5_dir/prefix*suffix """ return self._res_file @property def lr_res_file(self): """Get the (optional) low-resolution resource filename and path. Returns ------- str | None """ return self._lr_res_file @property def meta(self): """Get resource meta for all sites in project points. Returns ------- meta : pd.DataFrame Meta data df for sites in project points. Column names are meta data variables, rows are different sites. The row index does not indicate the site number if the project points are non-sequential or do not start from 0, so a `SiteDataField.GID` column is added. """ if self._meta is None: res_cls = Resource kwargs = {"hsds": self._hsds} if self._multi_h5_res: res_cls = MultiFileResource kwargs = {} res_gids = self.project_points.sites if self._gid_map is not None: res_gids = [self._gid_map[i] for i in res_gids] with res_cls(self.res_file, **kwargs) as res: meta_len = res.shapes["meta"][0] if np.max(res_gids) > meta_len: msg = ( "ProjectPoints has a max site gid of {} which is " "out of bounds for the meta data of len {} from " "resource file: {}".format( np.max(res_gids), meta_len, self.res_file ) ) logger.error(msg) raise ProjectPointsValueError(msg) self._meta = res["meta", res_gids] self._meta.loc[:, ResourceMetaField.GID] = res_gids if self.write_mapped_gids: sites = self.project_points.sites self._meta.loc[:, ResourceMetaField.GID] = sites self._meta.index = self.project_points.sites self._meta.index.name = ResourceMetaField.GID self._meta.loc[:, "reV_tech"] = self.project_points.tech return self._meta @property def time_index(self): """Get the generation resource time index data. Returns ------- _time_index : pandas.DatetimeIndex Time-series datetime index """ if self._time_index is None: if not self._multi_h5_res: res_cls = Resource kwargs = {"hsds": self._hsds} else: res_cls = MultiFileResource kwargs = {} with res_cls(self.res_file, **kwargs) as res: time_index = res.time_index downscale = self.project_points.sam_config_obj.downscale step = self.project_points.sam_config_obj.time_index_step if downscale is not None: from rex.utilities.downscale import make_time_index year = time_index.year[0] ds_freq = downscale["frequency"] time_index = make_time_index(year, ds_freq) logger.info( "reV solar generation running with temporal " 'downscaling frequency "{}" with final ' "time_index length {}".format(ds_freq, len(time_index)) ) elif step is not None: time_index = time_index[::step] time_index = self.handle_lifetime_index(time_index) time_index = self.handle_leap_ti( time_index, drop_leap=self._drop_leap ) self._time_index = time_index return self._time_index
[docs] def handle_lifetime_index(self, ti): """Adjust the time index if modeling full system lifetime. Parameters ---------- ti : pandas.DatetimeIndex Time-series datetime index with leap days. Returns ------- ti : pandas.DatetimeIndex Time-series datetime index. """ life_var = "system_use_lifetime_output" lifetime_periods = [] for sam_meta in self.sam_metas.values(): if life_var in sam_meta and sam_meta[life_var] == 1: lifetime_period = sam_meta["analysis_period"] lifetime_periods.append(lifetime_period) else: lifetime_periods.append(1) if not any(ltp > 1 for ltp in lifetime_periods): return ti # Only one time index may be passed, check that lifetime periods match n_unique_periods = len(np.unique(lifetime_periods)) if n_unique_periods != 1: msg = ( "reV cannot handle multiple analysis_periods when " "modeling with `system_use_lifetime_output` set " "to 1. Found {} different analysis_periods in the SAM " "configs".format(n_unique_periods) ) logger.error(msg) raise ConfigError(msg) # Collect requested variables to check for lifetime compatibility array_vars = [ var for var, attrs in GEN_ATTRS.items() if attrs["type"] == "array" ] valid_vars = ["gen_profile", "cf_profile", "cf_profile_ac"] invalid_vars = set(array_vars) - set(valid_vars) invalid_requests = [ var for var in self.output_request if var in invalid_vars ] if invalid_requests: # SAM does not output full lifetime for all array variables msg = ( "reV can only handle the following output arrays " "when modeling with `system_use_lifetime_output` set " "to 1: {}. Try running without {}.".format( ", ".join(valid_vars), ", ".join(invalid_requests) ) ) logger.error(msg) raise ConfigError(msg) sam_meta = self.sam_metas[next(iter(self.sam_metas))] analysis_period = sam_meta["analysis_period"] logger.info( "reV generation running with a full system " "life of {} years.".format(analysis_period) ) old_end = ti[-1] new_end = old_end + pd.DateOffset(years=analysis_period - 1) step = old_end - ti[-2] time_extension = pd.date_range(old_end, new_end, freq=step) ti = time_extension.union(ti) return ti
@classmethod def _run_single_worker( cls, points_control, tech=None, res_file=None, lr_res_file=None, output_request=None, scale_outputs=True, gid_map=None, nn_map=None, bias_correct=None, ): """Run a SAM generation analysis based on the points_control iterator. Parameters ---------- points_control : reV.config.PointsControl A PointsControl instance dictating what sites and configs are run. tech : str SAM technology to analyze (pvwattsv7, windpower, tcsmoltensalt, solarwaterheat, troughphysicalheat, lineardirectsteam) The string should be lower-cased with spaces and _ removed. res_file : str Filepath to single resource file, multi-h5 directory, or /h5_dir/prefix*suffix lr_res_file : str | None Optional low resolution resource file that will be dynamically mapped+interpolated to the nominal-resolution res_file. This needs to be of the same format as resource_file, e.g. they both need to be handled by the same rex Resource handler such as WindResource output_request : list | tuple Output variables requested from SAM. scale_outputs : bool Flag to scale outputs in-place immediately upon Gen returning data. gid_map : None | dict Mapping of unique integer generation gids (keys) to single integer resource gids (values). This enables the user to input unique generation gids in the project points that map to non-unique resource gids. This can be None or a pre-extracted dict. nn_map : np.ndarray Optional 1D array of nearest neighbor mappings associated with the res_file to lr_res_file spatial mapping. For details on this argument, see the rex.MultiResolutionResource docstring. bias_correct : None | pd.DataFrame Optional DataFrame or CSV filepath to a wind or solar resource bias correction table. This has columns: - ``gid``: GID of site (can be index name of dataframe) - ``method``: function name from ``rex.bias_correction`` module The ``gid`` field should match the true resource ``gid`` regardless of the optional ``gid_map`` input. Only ``windspeed`` **or** ``GHI`` + ``DNI`` + ``DHI`` are corrected, depending on the technology (wind for the former, PV or CSP for the latter). See the functions in the ``rex.bias_correction`` module for available inputs for ``method``. Any additional kwargs required for the requested ``method`` can be input as additional columns in the ``bias_correct`` table e.g., for linear bias correction functions you can include ``scalar`` and ``adder`` inputs as columns in the ``bias_correct`` table on a site-by-site basis. If ``None``, no corrections are applied. By default, ``None``. Returns ------- out : dict Output dictionary from the SAM reV_run function. Data is scaled within this function to the datatype specified in Gen.OUT_ATTRS. """ # Extract the site df from the project points df. site_df = points_control.project_points.df site_df = site_df.set_index(ResourceMetaField.GID, drop=True) # run generation method for specified technology try: out = cls.OPTIONS[tech].reV_run( points_control, res_file, site_df, lr_res_file=lr_res_file, output_request=output_request, gid_map=gid_map, nn_map=nn_map, bias_correct=bias_correct, ) except Exception as e: out = {} logger.exception("Worker failed for PC: {}".format(points_control)) raise e if scale_outputs: # dtype convert in-place so no float data is stored unnecessarily for site, site_output in out.items(): for k in site_output.keys(): # iterate through variable names in each site's output dict if k in cls.OUT_ATTRS: if out[site][k] is None: continue # get dtype and scale for output variable name dtype = cls.OUT_ATTRS[k].get("dtype", "float32") scale_factor = cls.OUT_ATTRS[k].get("scale_factor", 1) # apply scale factor and dtype out[site][k] *= scale_factor if np.issubdtype(dtype, np.integer): # round after scaling if integer dtype out[site][k] = np.round(out[site][k]) if isinstance(out[site][k], np.ndarray): # simple astype for arrays out[site][k] = out[site][k].astype(dtype) else: # use numpy array conversion for scalar values out[site][k] = np.array( [out[site][k]], dtype=dtype )[0] return out def _parse_gid_map(self, gid_map): """ Parameters ---------- gid_map : None | dict | str This can be None, a pre-extracted dict, or a filepath to json or csv. If this is a csv, it must have the columns "gid" (which matches the project points) and "gid_map" (gids to extract from the resource input) Returns ------- gid_map : None | dict Mapping of unique integer generation gids (keys) to single integer resource gids (values). This enables the user to input unique generation gids in the project points that map to non-unique resource gids. """ if isinstance(gid_map, str): if gid_map.endswith(".csv"): gid_map = pd.read_csv(gid_map).to_dict() msg = f"Need {ResourceMetaField.GID} in gid_map column" assert ResourceMetaField.GID in gid_map, msg assert "gid_map" in gid_map, 'Need "gid_map" in gid_map column' gid_map = { gid_map[ResourceMetaField.GID][i]: gid_map["gid_map"][i] for i in gid_map[ResourceMetaField.GID].keys() } elif gid_map.endswith(".json"): with open(gid_map) as f: gid_map = json.load(f) if isinstance(gid_map, dict): if not self._multi_h5_res: res_cls = Resource kwargs = {"hsds": self._hsds} else: res_cls = MultiFileResource kwargs = {} with res_cls(self.res_file, **kwargs) as res: for gen_gid, res_gid in gid_map.items(): msg1 = ( "gid_map values must all be int but received " "{}: {}".format(gen_gid, res_gid) ) msg2 = ( "Could not find the gen_gid to res_gid mapping " "{}: {} in the resource meta data.".format( gen_gid, res_gid ) ) assert isinstance(gen_gid, int), msg1 assert isinstance(res_gid, int), msg1 assert res_gid in res.meta.index.values, msg2 for gen_gid in self.project_points.sites: msg3 = ( "Could not find the project points gid {} in the " "gen_gid input of the gid_map.".format(gen_gid) ) assert gen_gid in gid_map, msg3 elif gid_map is not None: msg = ( "Could not parse gid_map, must be None, dict, or path to " "csv or json, but received: {}".format(gid_map) ) logger.error(msg) raise InputError(msg) return gid_map def _parse_nn_map(self): """Parse a nearest-neighbor spatial mapping array if lr_res_file is provided (resource data is at two resolutions and the low-resolution data must be mapped to the nominal-resolution data) Returns ------- nn_map : np.ndarray Optional 1D array of nearest neighbor mappings associated with the res_file to lr_res_file spatial mapping. For details on this argument, see the rex.MultiResolutionResource docstring. """ nn_map = None if self.lr_res_file is not None: handler_class = Resource if "*" in self.res_file or "*" in self.lr_res_file: handler_class = MultiFileResource with handler_class(self.res_file) as hr_res, handler_class( self.lr_res_file ) as lr_res: logger.info( "Making nearest neighbor map for multi " "resolution resource data..." ) nn_d, nn_map = MultiResolutionResource.make_nn_map( hr_res, lr_res ) logger.info( "Done making nearest neighbor map for multi " "resolution resource data!" ) logger.info( "Made nearest neighbor mapping between nominal-" "resolution and low-resolution resource files. " "Min / mean / max dist: {:.3f} / {:.3f} / {:.3f}".format( nn_d.min(), nn_d.mean(), nn_d.max() ) ) return nn_map @staticmethod def _parse_bc(bias_correct): """Parse the bias correction data. Parameters ---------- bias_correct : str | pd.DataFrame, optional Optional DataFrame or CSV filepath to a wind or solar resource bias correction table. This has columns: - ``gid``: GID of site (can be index name of dataframe) - ``method``: function name from ``rex.bias_correction`` module The ``gid`` field should match the true resource ``gid`` regardless of the optional ``gid_map`` input. Only ``windspeed`` **or** ``GHI`` + ``DNI`` + ``DHI`` are corrected, depending on the technology (wind for the former, PV or CSP for the latter). See the functions in the ``rex.bias_correction`` module for available inputs for ``method``. Any additional kwargs required for the requested ``method`` can be input as additional columns in the ``bias_correct`` table e.g., for linear bias correction functions you can include ``scalar`` and ``adder`` inputs as columns in the ``bias_correct`` table on a site-by-site basis. If ``None``, no corrections are applied. By default, ``None``. Returns ------- bias_correct : None | pd.DataFrame Optional DataFrame or CSV filepath to a wind or solar resource bias correction table. This has columns: - ``gid``: GID of site (can be index name of dataframe) - ``method``: function name from ``rex.bias_correction`` module The ``gid`` field should match the true resource ``gid`` regardless of the optional ``gid_map`` input. Only ``windspeed`` **or** ``GHI`` + ``DNI`` + ``DHI`` are corrected, depending on the technology (wind for the former, PV or CSP for the latter). See the functions in the ``rex.bias_correction`` module for available inputs for ``method``. Any additional kwargs required for the requested ``method`` can be input as additional columns in the ``bias_correct`` table e.g., for linear bias correction functions you can include ``scalar`` and ``adder`` inputs as columns in the ``bias_correct`` table on a site-by-site basis. If ``None``, no corrections are applied. By default, ``None``. """ if isinstance(bias_correct, type(None)): return bias_correct if isinstance(bias_correct, str): bias_correct = pd.read_csv(bias_correct).rename( SupplyCurveField.map_to(ResourceMetaField), axis=1 ) msg = ( "Bias correction data must be a filepath to csv or a dataframe " "but received: {}".format(type(bias_correct)) ) assert isinstance(bias_correct, pd.DataFrame), msg msg = ( "Bias correction table must have {!r} column but only found: " "{}".format(ResourceMetaField.GID, list(bias_correct.columns)) ) assert ( ResourceMetaField.GID in bias_correct or bias_correct.index.name == ResourceMetaField.GID ), msg if bias_correct.index.name != ResourceMetaField.GID: bias_correct = bias_correct.set_index(ResourceMetaField.GID) msg = ( 'Bias correction table must have "method" column but only ' "found: {}".format(list(bias_correct.columns)) ) assert "method" in bias_correct, msg return bias_correct def _parse_output_request(self, req): """Set the output variables requested from generation. Parameters ---------- req : list | tuple Output variables requested from SAM. Returns ------- output_request : list Output variables requested from SAM. """ output_request = super()._parse_output_request(req) # ensure that cf_mean is requested from output if "cf_mean" not in output_request: output_request.append("cf_mean") if _is_solar_run_with_ac_outputs(self.tech): if "dc_ac_ratio" not in output_request: output_request.append("dc_ac_ratio") for dset in ["cf_mean", "cf_profile"]: ac_dset = f"{dset}_ac" if dset in output_request and ac_dset not in output_request: output_request.append(ac_dset) for request in output_request: if request not in self.OUT_ATTRS: msg = ( 'User output request "{}" not recognized. ' "Will attempt to extract from PySAM.".format(request) ) logger.debug(msg) return list(set(output_request)) def _reduce_kwargs(self, pc, **kwargs): """Reduce the global kwargs on a per-worker basis to reduce memory footprint Parameters ---------- pc : PointsControl PointsControl object for a single worker chunk kwargs : dict reV generation kwargs for all gids that needs to be reduced before being sent to ``_run_single_worker()`` Returns ------- kwargs : dict Same as input but reduced just for the gids in pc """ gids = pc.project_points.gids gid_map = kwargs.get("gid_map", None) bias_correct = kwargs.get("bias_correct", None) if bias_correct is not None: if gid_map is not None: gids = [gid_map[gid] for gid in gids] mask = bias_correct.index.isin(gids) kwargs["bias_correct"] = bias_correct[mask] return kwargs
[docs] def run(self, out_fpath=None, max_workers=1, timeout=1800, pool_size=None): """Execute a parallel reV generation run with smart data flushing. Parameters ---------- out_fpath : str, optional Path to output file. If ``None``, no output file will be written. If the filepath is specified but the module name (generation) and/or resource data year is not included, the module name and/or resource data year will get added to the output file name. By default, ``None``. max_workers : int, optional Number of local workers to run on. If ``None``, or if running from the command line and omitting this argument from your config file completely, this input is set to ``os.cpu_count()``. Otherwise, the default is ``1``. timeout : int, optional Number of seconds to wait for parallel run iteration to complete before returning zeros. By default, ``1800`` seconds. pool_size : int, optional Number of futures to submit to a single process pool for parallel futures. If ``None``, the pool size is set to ``os.cpu_count() * 2``. By default, ``None``. Returns ------- str | None Path to output HDF5 file, or ``None`` if results were not written to disk. """ # initialize output file self._init_fpath(out_fpath, module=ModuleName.GENERATION) self._init_h5() self._init_out_arrays() if pool_size is None: pool_size = os.cpu_count() * 2 kwargs = { "tech": self.tech, "res_file": self.res_file, "lr_res_file": self.lr_res_file, "output_request": self.output_request, "scale_outputs": self.scale_outputs, "gid_map": self._gid_map, "nn_map": self._nn_map, "bias_correct": self._bc, } logger.info( "Running reV generation for: {}".format(self.points_control) ) logger.debug( 'The following project points were specified: "{}"'.format( self.project_points ) ) logger.debug( "The following SAM configs are available to this run:\n{}".format( pprint.pformat(self.sam_configs, indent=4) ) ) logger.debug( "The SAM output variables have been requested:\n{}".format( self.output_request ) ) # use serial or parallel execution control based on max_workers try: if max_workers == 1: logger.debug( "Running serial generation for: {}".format( self.points_control ) ) for i, pc_sub in enumerate(self.points_control): self.out = self._run_single_worker(pc_sub, **kwargs) logger.info( "Finished reV gen serial compute for: {} " "(iteration {} out of {})".format( pc_sub, i + 1, len(self.points_control) ) ) self.flush() else: logger.debug( "Running parallel generation for: {}".format( self.points_control ) ) self._parallel_run( max_workers=max_workers, pool_size=pool_size, timeout=timeout, **kwargs, ) except Exception as e: logger.exception("reV generation failed!") raise e return self._out_fpath
def _is_solar_run_with_ac_outputs(tech): """True if tech is pvwattsv8+""" if "pvwatts" not in tech.casefold(): return False return tech.casefold() not in {f"pvwattsv{i}" for i in range(8)}