FLASC data format#
Data used by FLASC adheres to the following conventions:
time
represents the time, preferably in UTCturbines are sequentially numbered, starting from 0, and numbers are always 3 digits long (e.g. the "8th" turbine is represented as
007
)pow_000
represents the power output of turbine 0ws_000
represents the wind speed at turbine 0wd_000
represents the wind direction at turbine 0wd
represents the wind direction chosen for example to represent the overall inflow directionws
represents the wind speed chosen for example to represent the overall inflow speedpow_ref
represents the power output of the reference turbine (or average of reference turbines)pow_test
represents the power output of the test turbine (or average of test turbines)
import pandas as pd
# This dataframe adhere's to FLASC's data formatting requirements and could be used for
# FLASC analysis
df = pd.DataFrame(
{
"time": [0, 1, 2, 3, 4, 5],
"pow_000": [100, 100, 100, 100, 100, 100],
"pow_001": [100, 100, 100, 100, 100, 100],
"ws_000": [10, 10, 10, 10, 10, 10],
"ws_001": [10, 10, 10, 10, 10, 10],
"wd_000": [270, 270, 270, 270, 270, 270],
"wd_001": [270, 270, 270, 270, 270, 270],
}
)
FlascDataFrame
#
FLASC has historically used a pandas.DataFrame
to store the data to be processed, as demonstrated above. Beginning in version 2.1, the FlascDataFrame
class was introduced to provide additional methods and functionality to the data. FlascDataFrame
is a subclass of pandas.DataFrame
and can be used in place of a pandas.DataFrame
. The following code cells provide an overview of the FlascDataFrame
class and its methods. Support is added for converting between "FLASC" style data formatting and "user" formats, to make adhering to FLASC's data formatting conventions more straightforward.
Using FlascDataFrame#
# The above pandas.DataFrame can be converted to a FlascDataFrame directly
from flasc import FlascDataFrame
fdf = FlascDataFrame(df)
print(fdf.head())
FlascDataFrame in FLASC format
time pow_000 pow_001 ws_000 ws_001 wd_000 wd_001
0 0 100 100 10 10 270 270
1 1 100 100 10 10 270 270
2 2 100 100 10 10 270 270
3 3 100 100 10 10 270 270
4 4 100 100 10 10 270 270
# The FlascDataFrame includes a few helper functions added to the base pandas dataframe.
# The following returns the number of turbines found in the dataframe.
print(fdf.n_turbines)
2
Creating a FlascDataFrame from User Data#
More value from a FlascDataFrame is obtained when using it convert back and forth between user-formatted data and Flasc Data.
import numpy as np
# Suppose the we have a 3 turbine farm with turbines names 'TB01', 'TB02', 'TB03'
# For each turbine we have power, wind speed and wind direction data
# Assume that in the native data collection system,
# the signal names for each channel are given below
N = 20 # Number of data points
# Wind speeds
wind_speed_TB01 = np.random.rand(N) + 8.0
wind_speed_TB02 = np.random.rand(N) + 7.5
wind_speed_TB03 = np.random.rand(N) + 8.5
# Wind directions
wind_dir_TB01 = 10 * np.random.rand(N) + 270.0
wind_dir_TB02 = 10 * np.random.rand(N) + 270.0
wind_dir_TB03 = 10 * np.random.rand(N) + 270.0
# Power
power_TB01 = wind_speed_TB01**3
power_TB02 = wind_speed_TB02**3
power_TB03 = wind_speed_TB03**3
# Time
time = np.arange(N)
# Create a dictrionary storing this data, which could be used to instantiate a pandas.DataFrame
# or a FlascDataFrame
data_dict = {
"time": time,
"wind_speed_TB01": wind_speed_TB01,
"wind_speed_TB02": wind_speed_TB02,
"wind_speed_TB03": wind_speed_TB03,
"wind_dir_TB01": wind_dir_TB01,
"wind_dir_TB02": wind_dir_TB02,
"wind_dir_TB03": wind_dir_TB03,
"power_TB01": power_TB01,
"power_TB02": power_TB02,
"power_TB03": power_TB03,
}
The data is currently stored using the the channel and turbine names of the user. By supplying additional metadata to the FlascDataFrame, the data can be converted to and from the FLASC format.
# Declare a channel_name_map dictionary to map the signal names to the turbine names.
# The turbine numbers when 0-indexed in FLASC format should
# align with their numbering in the FLORIS model of the same farm.
channel_name_map = {
"time": "time",
"wind_speed_TB01": "ws_000",
"wind_speed_TB02": "ws_001",
"wind_speed_TB03": "ws_002",
"wind_dir_TB01": "wd_000",
"wind_dir_TB02": "wd_001",
"wind_dir_TB03": "wd_002",
"power_TB01": "pow_000",
"power_TB02": "pow_001",
"power_TB03": "pow_002",
}
We are now in a position to instantiate a FlascDataFrame
fdf = FlascDataFrame(data_dict, channel_name_map=channel_name_map)
print(fdf.head())
FlascDataFrame in user (wide) format
time wind_speed_TB01 wind_speed_TB02 wind_speed_TB03 wind_dir_TB01 \
0 0 8.791620 8.378790 8.639789 273.567292
1 1 8.465162 8.161127 8.649358 276.211405
2 2 8.794605 7.534560 8.553670 272.986914
3 3 8.260813 7.529519 9.498715 271.136989
4 4 8.653954 7.834524 9.115836 278.006385
wind_dir_TB02 wind_dir_TB03 power_TB01 power_TB02 power_TB03
0 278.202966 278.476628 679.527041 588.225592 644.925322
1 274.473193 270.849842 606.604685 543.563637 647.070485
2 279.969626 279.627023 680.219500 427.733847 625.831556
3 272.313670 270.871048 563.726432 426.875910 857.027087
4 273.287886 279.098815 648.102506 480.881278 757.511918
Converting this to the FLASC format (and back) now simply requires calling the appropriate method. This makes it convenient to work with FLASC functions (that require the data to be in FLASC format) and user-provided functions (that may require the user's formatting) within the same workflow.
# Convert now into FLASC format (as a copy)
fdf_flasc = fdf.convert_to_flasc_format()
print(fdf_flasc.head(2))
print("\n\n")
# Convert back to user format (as a copy)
fdf_user = fdf_flasc.convert_to_user_format()
print(fdf_user.head(2))
print("\n\n")
# Conversions can also happen in place, if the inplace argument is set to True
fdf.convert_to_flasc_format(inplace=True)
print(fdf.head(2))
print("\n")
fdf.convert_to_user_format(inplace=True)
print(fdf.head(2))
FlascDataFrame in FLASC format
time ws_000 ws_001 ws_002 wd_000 wd_001 wd_002 \
0 0 8.791620 8.378790 8.639789 273.567292 278.202966 278.476628
1 1 8.465162 8.161127 8.649358 276.211405 274.473193 270.849842
pow_000 pow_001 pow_002
0 679.527041 588.225592 644.925322
1 606.604685 543.563637 647.070485
FlascDataFrame in user (wide) format
time wind_speed_TB01 wind_speed_TB02 wind_speed_TB03 wind_dir_TB01 \
0 0 8.791620 8.378790 8.639789 273.567292
1 1 8.465162 8.161127 8.649358 276.211405
wind_dir_TB02 wind_dir_TB03 power_TB01 power_TB02 power_TB03
0 278.202966 278.476628 679.527041 588.225592 644.925322
1 274.473193 270.849842 606.604685 543.563637 647.070485
FlascDataFrame in FLASC format
time ws_000 ws_001 ws_002 wd_000 wd_001 wd_002 \
0 0 8.791620 8.378790 8.639789 273.567292 278.202966 278.476628
1 1 8.465162 8.161127 8.649358 276.211405 274.473193 270.849842
pow_000 pow_001 pow_002
0 679.527041 588.225592 644.925322
1 606.604685 543.563637 647.070485
FlascDataFrame in user (wide) format
time wind_speed_TB01 wind_speed_TB02 wind_speed_TB03 wind_dir_TB01 \
0 0 8.791620 8.378790 8.639789 273.567292
1 1 8.465162 8.161127 8.649358 276.211405
wind_dir_TB02 wind_dir_TB03 power_TB01 power_TB02 power_TB03
0 278.202966 278.476628 679.527041 588.225592 644.925322
1 274.473193 270.849842 606.604685 543.563637 647.070485
Converting Wide and Long#
FlascDataFrame also provides methods to convert between wide and long formats. FLASC's native format is always "wide", that is, each channel has its own column. But FlascDataFrame
can be used to convert to a user format that is "long" where each channel is a row in the dataframe.
df = pd.DataFrame(
{
"time": time,
"wind_speed_TB01": wind_speed_TB01,
"wind_speed_TB02": wind_speed_TB02,
"wind_speed_TB03": wind_speed_TB03,
"wind_dir_TB01": wind_dir_TB01,
"wind_dir_TB02": wind_dir_TB02,
"wind_dir_TB03": wind_dir_TB03,
"power_TB01": power_TB01,
"power_TB02": power_TB02,
"power_TB03": power_TB03,
}
)
# Convert to "long" format; this is taken to be the user's desired format in this example.
df = pd.melt(df, id_vars=["time"], var_name="channel", value_name="value")
print(df)
time channel value
0 0 wind_speed_TB01 8.791620
1 1 wind_speed_TB01 8.465162
2 2 wind_speed_TB01 8.794605
3 3 wind_speed_TB01 8.260813
4 4 wind_speed_TB01 8.653954
.. ... ... ...
175 15 power_TB03 795.022768
176 16 power_TB03 715.606027
177 17 power_TB03 686.395594
178 18 power_TB03 824.124406
179 19 power_TB03 654.576596
[180 rows x 3 columns]
# This time include in the specification of the FlascDataFrame the name of the
# columns of the long data
fdf = FlascDataFrame(
df,
channel_name_map=channel_name_map,
long_data_columns={"variable_column": "channel", "value_column": "value"},
)
print(fdf.head())
FlascDataFrame in user (long) format
time channel value
0 0 wind_speed_TB01 8.791620
1 1 wind_speed_TB01 8.465162
2 2 wind_speed_TB01 8.794605
3 3 wind_speed_TB01 8.260813
4 4 wind_speed_TB01 8.653954
The data can still be converted to FLASC format (and back)
fdf_flasc = fdf.convert_to_flasc_format()
print(fdf_flasc.head(2))
print("\n\n")
fdf_user = fdf_flasc.convert_to_user_format()
print(fdf_user.head(2))
# As before, conversions can also happen in place, if the inplace argument is set to True
FlascDataFrame in FLASC format
time pow_000 pow_001 pow_002 wd_000 wd_001 \
0 0 679.527041 588.225592 644.925322 273.567292 278.202966
1 1 606.604685 543.563637 647.070485 276.211405 274.473193
wd_002 ws_000 ws_001 ws_002
0 278.476628 8.791620 8.378790 8.639789
1 270.849842 8.465162 8.161127 8.649358
FlascDataFrame in user (long) format
time channel value
0 0 power_TB01 679.527041
1 0 power_TB02 588.225592
Exporting to wind-up format#
Another use case for FlascDataFrame
is to export the data into the "wind-up" format. Wind-up is an open source tool for assessing uplift provided by RES. This conversion provides a convenient way to assess the data, in the case of uplift assessment, using the wind-up tool, which is imported by FLASC. A full demonstration of the usage of the wind-up tool in FLASC is provided within the Smarteole example set.
fdf = fdf.convert_to_flasc_format()
df_windup = fdf.export_to_windup_format() # df_windup is a pandas DataFrame
print(df_windup.head())
raw_ActivePowerMean raw_YawAngleMean \
TimeStamp_StartFormat
0 679.527041 273.567292
1 606.604685 276.211405
2 680.219500 272.986914
3 563.726432 271.136989
4 648.102506 278.006385
raw_WindSpeedMean TurbineName PitchAngleMean \
TimeStamp_StartFormat
0 8.791620 000 0
1 8.465162 000 0
2 8.794605 000 0
3 8.260813 000 0
4 8.653954 000 0
GenRpmMean raw_ShutdownDuration ActivePowerMean \
TimeStamp_StartFormat
0 1000 0 679.527041
1 1000 0 606.604685
2 1000 0 680.219500
3 1000 0 563.726432
4 1000 0 648.102506
WindSpeedMean YawAngleMean ShutdownDuration
TimeStamp_StartFormat
0 8.791620 273.567292 0
1 8.465162 276.211405 0
2 8.794605 272.986914 0
3 8.260813 271.136989 0
4 8.653954 278.006385 0