flasc.data_processing.time_operations#
Time operations for data processing.
Functions
Downsample a dataframe to a average accounting for angular columns. |
|
Compute a moving average of a dataframe with angular columns. |
|
Resample a dataframe by interpolation onto a new time array. |
|
Flatten multi-level columns in a DataFrame. |
- flasc.data_processing.time_operations.df_movingaverage(df_in, cols_angular, window_width=datetime.timedelta(seconds=60), min_periods=1, center=True, calc_median_min_max_std=False)[source]#
Compute a moving average of a dataframe with angular columns.
Note that median, minimum, and maximum do not handle angular quantities and should be treated carefully. Standard deviation handles angular quantities.
- Parameters:
df_in (pd.DataFrame | FlascDataFrame) -- Input dataframe.
cols_angular (list) -- List of angular columns.
window_width (timedelta) -- Width of the moving average window.
min_periods (int) -- Minimum number of periods to consider.
center (bool) -- Center the time index. Default is True.
calc_median_min_max_std (bool) -- Calculate median, min, max, and std. Default is False.
- Returns:
Output dataframe with moving averages.
- Return type:
pd.DataFrame
- flasc.data_processing.time_operations.df_downsample(df_in, cols_angular, window_width=datetime.timedelta(seconds=60), min_periods=1, center=False, calc_median_min_max_std=False, return_index_mapping=False)[source]#
Downsample a dataframe to a average accounting for angular columns.
- Parameters:
df_in (pd.DataFrame | FlascDataFrame) -- Input dataframe.
cols_angular (list) -- List of angular columns.
window_width (timedelta) -- Width of the average window.
min_periods (int) -- Minimum number of data points for a bin to be valid.
center (bool) -- Center the time index. Default is False.
calc_median_min_max_std (bool) -- Calculate median, min, max, and std. Default is False.
return_index_mapping (bool) -- Return index mapping. Default is False.
- Returns:
- A tuple (pd.DataFrame, np.ndarray) if return_index_mapping is True. Where
the DataFrame is the downsampled dataframe and the np.ndarray is the index mapping.
A pd.DataFrame | FlascDataFrame if return_index_mapping is False.
- flasc.data_processing.time_operations.df_resample_by_interpolation(df, time_array, circular_cols, interp_method='linear', max_gap=None, verbose=True)[source]#
Resample a dataframe by interpolation onto a new time array.
- Parameters:
df (pd.DataFrame | FlascDataFrame) -- Input dataframe.
time_array (np.array) -- New time array.
circular_cols (list) -- List of columns that are circular.
interp_method (str) -- Interpolation method. Default is "linear".
max_gap (float) -- Maximum gap for interpolation. Default is None. If None, will be set to 1.5 times the median timestep.
verbose (bool) -- Print information. Default is True.
- Returns:
Resampled dataframe
- Return type:
pd.DataFrame | FlascDataFrame
- flasc.data_processing.time_operations.flatten_cols(df)[source]#
Flatten multi-level columns in a DataFrame.
- Parameters:
df (pd.DataFrame | FlascDataFrame) -- Input DataFrame.
- Returns:
Flattened DataFrame.
- Return type:
pd.DataFrame | FlascDataFrame