flasc.data_processing.northing_offset_change_hoger.homogenize_hoger#
- flasc.data_processing.northing_offset_change_hoger.homogenize_hoger(scada: DataFrame | FlascDataFrame, var: str = 'wd', threshold: int = 1000, reference: str = 'last', plot_it: bool = False, max_depth: int = 4, ccp_alpha: float = 0.09) tuple[DataFrame, DataFrame] [source]#
Homogenization routine of the Scada directions of the different wind turbines based on "var".
The Scada data is explored by applying a regression tree procedure to the differences in direction nof the wind turbines to get the most common jumps and their positions. These jumps are then reversed to correct the deviations.
- Parameters:
scada (Union[pd.DataFrame, FlascDataFrame]) -- DataFrame containing the SCADA data.
var (str, optional) -- Variable to homogenize (yaw or wd). Defaults to 'wd'.
threshold (int, optional) -- Threshold for discretization. Defaults to 1000.
reference (str, optional) -- Reference point for homogenization. Defaults to 'last'.
plot_it (bool, optional) -- Whether to plot the results. Defaults to False.
max_depth (int, optional) -- Maximum depth of the regression tree. Defaults to 4.
ccp_alpha (float, optional) -- Complexity parameter for pruning. Defaults to 0.09
- Returns:
- Homogenized SCADA data and the results used to
homogenize it with the jumps and their knots.
- Return type:
tuple[pd.DataFrame, pd.DataFrame]