flasc.data_processing.northing_offset_change_hoger#
Module for homogenizing the wind direction data using the HOGER method.
- HOGER was developed by Paul Poncet (engie-paul-poncet)
and Thomas Duc (engie-thomas-duc) of Engie,
and Rubén González-Lope (rglope) and Alvaro Gonzalez Salcedo (alvarogonzalezsalcedo) of CENER within the TWAIN project.
Functions
Homogenization routine of the Scada directions of the different wind turbines based on "var". |
- flasc.data_processing.northing_offset_change_hoger._get_leaves_and_knots(tree: DecisionTreeRegressor) tuple[ndarray, ndarray] [source]#
Function to get the values of the superficial knots and leaves of a Tree Regression.
- Parameters:
tree (DecisionTreeRegressor) -- Decision Tree Regression model.
- Returns:
Values of the leaves and positions of the knots.
- Return type:
tuple[np.ndarray, np.ndarray]
- flasc.data_processing.northing_offset_change_hoger._discretize(x: Series, threshold: int) ndarray [source]#
Get the class of the knots based on the times they repeat.
- Parameters:
x (pd.Series) -- Series of knot positions of the trees for the different wind turbines.
threshold (int) -- Threshold used to declare a tree branch.
- Returns:
Classes of the knots.
- Return type:
np.ndarray
- flasc.data_processing.northing_offset_change_hoger._shorth_mode(x: Series) float64 [source]#
Estimates the Venter mode through the shorth method for the given data.
- Parameters:
x (pd.Series) -- Data for which the mode will be estimated
- Returns:
Mode of the data
- Return type:
np.float64
- flasc.data_processing.northing_offset_change_hoger._plot_regression(y_data: Series, y_regr: ndarray, date_time: Series, ylabel: str)[source]#
Function to plot the results of the regression tree.
- Parameters:
y_data (pd.Series) -- Data used on the regression.
y_regr (np.ndarray) -- Results obtained from the tree regression.
date_time (pd.Series) -- Dates of the original data.
ylabel (str) -- Data that is shown in the plot.
- flasc.data_processing.northing_offset_change_hoger.homogenize_hoger(scada: DataFrame | FlascDataFrame, var: str = 'wd', threshold: int = 1000, reference: str = 'last', plot_it: bool = False, max_depth: int = 4, ccp_alpha: float = 0.09) tuple[DataFrame, DataFrame] [source]#
Homogenization routine of the Scada directions of the different wind turbines based on "var".
The Scada data is explored by applying a regression tree procedure to the differences in direction nof the wind turbines to get the most common jumps and their positions. These jumps are then reversed to correct the deviations.
- Parameters:
scada (Union[pd.DataFrame, FlascDataFrame]) -- DataFrame containing the SCADA data.
var (str, optional) -- Variable to homogenize (yaw or wd). Defaults to 'wd'.
threshold (int, optional) -- Threshold for discretization. Defaults to 1000.
reference (str, optional) -- Reference point for homogenization. Defaults to 'last'.
plot_it (bool, optional) -- Whether to plot the results. Defaults to False.
max_depth (int, optional) -- Maximum depth of the regression tree. Defaults to 4.
ccp_alpha (float, optional) -- Complexity parameter for pruning. Defaults to 0.09
- Returns:
- Homogenized SCADA data and the results used to
homogenize it with the jumps and their knots.
- Return type:
tuple[pd.DataFrame, pd.DataFrame]