flasc.analysis.expected_power_analysis_output.ExpectedPowerAnalysisOutput#
- class flasc.analysis.expected_power_analysis_output.ExpectedPowerAnalysisOutput(uplift_results: dict, a_in: AnalysisInput, test_turbines: list | None = None, wd_turbines: list | None = None, ws_turbines: list | None = None, use_predefined_wd: bool = False, use_predefined_ws: bool = False, wd_step: float = 2.0, wd_min: float = 0.0, wd_max: float = 360.0, ws_step: float = 1.0, ws_min: float = 0.0, ws_max: float = 50.0, bin_cols_in: list = ['wd_bin', 'ws_bin'], weight_by: str = 'min', df_freq: DataFrame | None = None, uplift_pairs: list | None = None, uplift_names: list | None = None, use_standard_error: bool = True, N: int = 1, percentiles: list = [2.5, 97.5], remove_any_null_turbine_bins: bool = False, cov_terms: str = 'zero')[source]#
Bases:
object
Store the results of the expected power analysis calculations.
Additionally provide convenient methods for plotting and saving the results.
Methods
Print the uplift results.
- Parameters:
uplift_results (dict)
a_in (AnalysisInput)
test_turbines (list)
wd_turbines (list)
ws_turbines (list)
use_predefined_wd (bool)
use_predefined_ws (bool)
wd_step (float)
wd_min (float)
wd_max (float)
ws_step (float)
ws_min (float)
ws_max (float)
bin_cols_in (list)
weight_by (str)
df_freq (DataFrame)
uplift_pairs (list)
uplift_names (list)
use_standard_error (bool)
N (int)
percentiles (list)
remove_any_null_turbine_bins (bool)
cov_terms (str)