reVX.least_cost_xmission.config.xmission_config.IsoMultipliers
- class IsoMultipliers[source]
Bases:
TypedDict
Multiplier config for one ISO
Methods
clear
()copy
()fromkeys
([value])Create a new dictionary with keys from iterable and values set to value.
get
(key[, default])Return the value for key if key is in the dictionary, else default.
items
()keys
()pop
(k[,d])If key is not found, d is returned if given, otherwise KeyError is raised
popitem
()Remove and return a (key, value) pair as a 2-tuple.
setdefault
(key[, default])Insert key with a value of default if key is not in the dictionary.
update
([E, ]**F)If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values
()Attributes
Name of ISO these multipliers are for
Land use multipliers
Slope multipliers and cutoffs
- land_use: LandUseMultipliers
Land use multipliers
- slope: SlopeMultipliers
Slope multipliers and cutoffs
- clear() None. Remove all items from D.
- copy() a shallow copy of D
- fromkeys(value=None, /)
Create a new dictionary with keys from iterable and values set to value.
- get(key, default=None, /)
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items
- keys() a set-like object providing a view on D's keys
- pop(k[, d]) v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
- popitem()
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.
- setdefault(key, default=None, /)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values