Regional Disaggregation
SLiDE.disaggregate_region
— Functiondisaggregate_region(dataset::Dataset, d::Dict, set::Dict)
This function disaggregates national-level parameters to the regional level and introduces new parameters.
Arguments
dataset::Dataset
identifierd::Dict
of model parametersset::Dict
of Arrays describing parameter indices (years, regions, goods, sectors, etc.)
Returns
d::Dict
of model parametersset::Dict
of Arrays describing parameter indices (years, regions, goods, sectors, etc.)
SLiDE._disagg_ys0!
— Functionys(yr,r,s,g)
, regional sectoral output
\[\bar{ys}_{yr,r,s,g} = \alpha_{yr,r,s}^{gsp} \tilde{ys}_{yr,s,g}\]
SLiDE._disagg_id0!
— Functionid(yr,r,g,s)
, regional intermediate demand
\[\bar{id}_{yr,r,g,s} = \alpha_{yr,r,s}^{gsp} \tilde{id}_{yr,g,s}\]
SLiDE._disagg_ty0!
— Functionty(yr,r,s)
, production tax rate
\[\begin{aligned} \bar{ty}_{yr,r,s}^{rev} &= \alpha_{yr,r,s}^{gsp} \tilde{va}_{yr,va,s} \;\forall\; va = othtax \\ \bar{ty}_{yr,r,s} &= \frac{\tilde{ty}_{yr,r,s}}{\sum_{g} \bar{ys}_{yr,r,s,g}} \end{aligned}\]
SLiDE._disagg_va0!
— Functionva(yr,va,s)
, regional value added
\[\bar{va}_{yr,r,s} = \alpha_{yr,r,s}^{gsp} \sum_{va = compen,surplus} \tilde{va}_{yr,va,s}\]
SLiDE._disagg_ld0!
— Functionld0(yr,r,s)
, labor demand
\[\bar{ld}_{yr,r,s} = \theta_{yr,r,s}^{ls} \bar{va}_{yr,s,g}\]
SLiDE._disagg_kd0!
— Functionkd0(yr,r,s)
, capital demand
\[\bar{kd}_{yr,r,s} = \bar{va}_{yr,r,s} - \bar{ld}_{yr,r,s}\]
SLiDE._disagg_fdcat!
— Function_disagg_fdcat!(d::Dict)
This function aggregates final demand categories into national consumption (C
), government (G
), and investment (I
) demand.
SLiDE._disagg_g0!
— Functiong0(yr,r,g)
, national government demand
\[\bar{g}_{yr,r,g} = \alpha_{yr,r,g}^{sgf} \sum_{G \in fd} \tilde{fd}_{yr,g,fd}\]
SLiDE._disagg_i0!
— Functioni0(yr,r,g)
, national investment demand
\[\bar{i}_{yr,r,g} = \alpha_{yr,r,g}^{gsp} \sum_{I \in fd} \tilde{fd}_{yr,g,fd}\]
SLiDE._disagg_cd0!
— Functioncd0(yr,r,g)
, national final consumption
\[\bar{cd}_{yr,r,g} = \alpha_{yr,r,g}^{pce} \sum_{C \in fd} \tilde{fd}_{yr,g,fd}\]
SLiDE._disagg_c0!
— Functionc0(yr,r)
, total final household consumption
\[\bar{c}_{yr,r} = \sum_{g} \bar{cd}_{yr,r,g}\]
SLiDE._disagg_yh0!
— Functionyh0(yr,r,g)
, household production
\[\bar{yh}_{yr,r,g} = \alpha_{yr,r,g} \tilde{fs}_{yr,g}\]
SLiDE._disagg_s0!
— Functions0(yr,r,g)
, total supply
\[\bar{s}_{yr,r,g} = \sum_{s} \bar{ys}_{yr,r,s,g} + \bar{yh}_{yr,r,g}\]
SLiDE._disagg_x0!
— Functionx0(yr,r,g)
, foreign exports
\[\bar{x}_{yr,r,g} = \alpha_{yr,r,g}^{utd} \tilde{x}_{yr,g}\]
SLiDE._disagg_rx0!
— Functionrx0(yr,r,g)
, re-exports
\[\bar{rx}_{yr,r,g} = \bar{x}_{yr,r,g} - \bar{s}_{yr,r,g}\]
SLiDE._disagg_a0!
— Functiona0(yr,r,g)
, domestic absorption
\[a_{yr,r,g} = \bar{cd}_{yr,r,g} + \bar{g}_{yr,r,g} + \bar{i}_{yr,r,g} + \sum_{s}\bar{id}_{yr,r,g}\]
SLiDE._disagg_thetaa!
— Functionthetaa(yr,r,g)
, share of regional absorption
\[\alpha_{yr,r,g}^{abs} = \frac{\bar{a}_{yr,r,g}}{\sum_{rr}\bar{a}_{yr,r,g}}\]
SLiDE._disagg_m0!
— Functionm0(yr,r,g)
, foreign imports
\[\bar{m}_{yr,r,g} = \alpha_{yr,r,g}^{abs} \tilde{m}_{yr,g}\]
SLiDE._disagg_md0!
— Functionmd0(yr,r,m,g)
, margin demand
\[\bar{md}_{yr,r,m,g} = \alpha_{yr,r,g}^{abs} \tilde{md}_{yr,m,g}\]
SLiDE._disagg_bop!
— Functionbopdef0(yr,r)
, balance of payments (closure parameter)
\[\bar{bop}_{yr,r} = \sum_{g} \left( \bar{m}_{yr,r,g} - \bar{x}_{yr,r,g} \right)\]
SLiDE._disagg_pt0
— Functionpt0
,
\[\begin{aligned} \bar{pt}_{yr,r,g} = &\left(1 - \bar{ta}_{yr,r,g} \right) \bar{a}_{yr,r,g} + \bar{rx}_{yr,r,g} \\ - &\left(1 + \bar{tm}_{yr,r,g} \right) \bar{m}_{yr,r,g} - \sum_{m} \bar{md}_{yr,r,m,g} \end{aligned}\]
SLiDE._disagg_dc0!
— Functiondc0
,
\[\bar{dc}_{yr,r,g} = \bar{s}_{yr,r,g} - \bar{x}_{yr,r,g} + \bar{rx}_{yr,r,g}\]
SLiDE._disagg_dd0max!
— Functiondd0max(yr,r,g)
, maximum regional demand from local market
\[\hat{dd}_{yr,r,g} = \min\left\{\bar{pt}_{yr,r,g}, \bar{dc}_{yr,r,g} \right\}\]
SLiDE._disagg_dd0!
— Functiondd0(yr,r,g)
, regional demand from local market
\[\bar{dd}_{yr,r,g} = \rho_{r,g}^{cfs} \hat{dd}_{yr,r,g}\]
SLiDE._disagg_nd0!
— Functionnd0_(yr,r,g)
, regional demand from national market
\[\bar{nd}_{yr,r,g} = \bar{pt}_{yr,r,g} - \bar{dd}_{yr,r,g}\]
SLiDE._disagg_mrgshr
— Functionmrgshr(yr,r,m)
, share of margin demand by region
\[\alpha_{yr,r,m}^{md} = \frac{\sum_{g}\bar{md}_{yr,r,m,g}}{\sum_{r,g}\bar{md}_{yr,r,m,g}}\]
SLiDE._disagg_ms0tot!
— Functionms0tot(yr,r,m,g)
, designate total supply of margins
\[\hat{ms}_{yr,r,m,g} = \alpha_{yr,r,m}^{md} \bar{ms}_{yr,g,m}\]
SLiDE._disagg_shrtrd!
— Functionshrtrd(yr,r,g,m)
, share of margin total by margin type
\[\beta_{yr,r,g,m}^{mar} = \frac{\hat{ms}_{yr,r,g,m}}{\sum_{m}\hat{ms}_{yr,r,g,m}}\]
SLiDE._disagg_dm0!
— Functiondm0(yr,r,g,m)
, margin supply from the local market
\[\bar{dm}_{yr,r,g,m} = \min\left\{ \rho_{r,g}^{cfs}\hat{ms}_{yr,r,g,m}, \beta_{yr,r,m,g}^{mar} \left(\bar{dc}_{yr,r,g} - \bar{dd}_{yr,r,g}\right) \right\}\]
SLiDE._disagg_nm0!
— Functionnm0(yr,r,g,m)
, margin demand from the national market
\[\bar{nm}_{yr,r,g,m} = \hat{ms}_{yr,r,g,m} - \bar{dm}_{yr,r,g,m}\]
SLiDE._disagg_xd0!
— Functionxd0(yr,r,g)
, regional supply to local market
\[\bar{xd}_{yr,r,g} = \sum_{m}\bar{dm}_{yr,r,g,m} + \bar{dd}_{yr,r,g}\]
SLiDE._disagg_xn0!
— Functionxn0(yr,r,g)
, regional supply to national market
\[\bar{xn}_{yr,r,g} = \bar{s}_{yr,r,g} + \bar{rx}_{yr,r,g} - \bar{xd}_{yr,r,g} - \bar{x}_{yr,r,g}\]
SLiDE._disagg_hhadj!
— Functionhhadj(yr,r)
, household adjustment
\[\begin{aligned} \bar{adj^{hh}}_{yr,r} = &\bar{c}_{yr,r} \\ &- \sum_{s}\left( \bar{ld}_{yr,r,s} + \bar{kd}_{yr,r,s} + \bar{yh}_{yr,r,s} \right) - \bar{bop}_{yr,r} \\ &- \sum_{s}\left( \bar{ta}_{yr,r,s}\bar{a0}_{yr,r,s} + \bar{tm}_{yr,r,s}\bar{m}_{yr,r,s} + \bar{ty}_{yr,r,s}\sum_{g}\bar{ys}_{yr,r,s,g} \right) \\ &+ \sum_{s}\left( \bar{g}_{yr,r,s} + \bar{i}_{yr,r,s} \right) \end{aligned}\]
SLiDE._disagg_ta0!
— Functionta0(yr,r,g)
: Absorption taxes
SLiDE._disagg_tm0!
— Functiontm0(yr,r,g)
: Import taxes