Regional Disaggregation

SLiDE.disaggregate_regionFunction
disaggregate_region(dataset::Dataset, d::Dict, set::Dict)

This function disaggregates national-level parameters to the regional level and introduces new parameters.

Arguments

  • dataset::Dataset identifier
  • d::Dict of model parameters
  • set::Dict of Arrays describing parameter indices (years, regions, goods, sectors, etc.)

Returns

  • d::Dict of model parameters
  • set::Dict of Arrays describing parameter indices (years, regions, goods, sectors, etc.)
source
SLiDE._disagg_ys0!Function

ys(yr,r,s,g), regional sectoral output

\[\bar{ys}_{yr,r,s,g} = \alpha_{yr,r,s}^{gsp} \tilde{ys}_{yr,s,g}\]

source
SLiDE._disagg_id0!Function

id(yr,r,g,s), regional intermediate demand

\[\bar{id}_{yr,r,g,s} = \alpha_{yr,r,s}^{gsp} \tilde{id}_{yr,g,s}\]

source
SLiDE._disagg_ty0!Function

ty(yr,r,s), production tax rate

\[\begin{aligned} \bar{ty}_{yr,r,s}^{rev} &= \alpha_{yr,r,s}^{gsp} \tilde{va}_{yr,va,s} \;\forall\; va = othtax \\ \bar{ty}_{yr,r,s} &= \frac{\tilde{ty}_{yr,r,s}}{\sum_{g} \bar{ys}_{yr,r,s,g}} \end{aligned}\]

source
SLiDE._disagg_va0!Function

va(yr,va,s), regional value added

\[\bar{va}_{yr,r,s} = \alpha_{yr,r,s}^{gsp} \sum_{va = compen,surplus} \tilde{va}_{yr,va,s}\]

source
SLiDE._disagg_ld0!Function

ld0(yr,r,s), labor demand

\[\bar{ld}_{yr,r,s} = \theta_{yr,r,s}^{ls} \bar{va}_{yr,s,g}\]

source
SLiDE._disagg_kd0!Function

kd0(yr,r,s), capital demand

\[\bar{kd}_{yr,r,s} = \bar{va}_{yr,r,s} - \bar{ld}_{yr,r,s}\]

source
SLiDE._disagg_fdcat!Function
_disagg_fdcat!(d::Dict)

This function aggregates final demand categories into national consumption (C), government (G), and investment (I) demand.

source
SLiDE._disagg_g0!Function

g0(yr,r,g), national government demand

\[\bar{g}_{yr,r,g} = \alpha_{yr,r,g}^{sgf} \sum_{G \in fd} \tilde{fd}_{yr,g,fd}\]

source
SLiDE._disagg_i0!Function

i0(yr,r,g), national investment demand

\[\bar{i}_{yr,r,g} = \alpha_{yr,r,g}^{gsp} \sum_{I \in fd} \tilde{fd}_{yr,g,fd}\]

source
SLiDE._disagg_cd0!Function

cd0(yr,r,g), national final consumption

\[\bar{cd}_{yr,r,g} = \alpha_{yr,r,g}^{pce} \sum_{C \in fd} \tilde{fd}_{yr,g,fd}\]

source
SLiDE._disagg_c0!Function

c0(yr,r), total final household consumption

\[\bar{c}_{yr,r} = \sum_{g} \bar{cd}_{yr,r,g}\]

source
SLiDE._disagg_yh0!Function

yh0(yr,r,g), household production

\[\bar{yh}_{yr,r,g} = \alpha_{yr,r,g} \tilde{fs}_{yr,g}\]

source
SLiDE._disagg_s0!Function

s0(yr,r,g), total supply

\[\bar{s}_{yr,r,g} = \sum_{s} \bar{ys}_{yr,r,s,g} + \bar{yh}_{yr,r,g}\]

source
SLiDE._disagg_x0!Function

x0(yr,r,g), foreign exports

\[\bar{x}_{yr,r,g} = \alpha_{yr,r,g}^{utd} \tilde{x}_{yr,g}\]

source
SLiDE._disagg_a0!Function

a0(yr,r,g), domestic absorption

\[a_{yr,r,g} = \bar{cd}_{yr,r,g} + \bar{g}_{yr,r,g} + \bar{i}_{yr,r,g} + \sum_{s}\bar{id}_{yr,r,g}\]

source
SLiDE._disagg_thetaa!Function

thetaa(yr,r,g), share of regional absorption

\[\alpha_{yr,r,g}^{abs} = \frac{\bar{a}_{yr,r,g}}{\sum_{rr}\bar{a}_{yr,r,g}}\]

source
SLiDE._disagg_m0!Function

m0(yr,r,g), foreign imports

\[\bar{m}_{yr,r,g} = \alpha_{yr,r,g}^{abs} \tilde{m}_{yr,g}\]

source
SLiDE._disagg_md0!Function

md0(yr,r,m,g), margin demand

\[\bar{md}_{yr,r,m,g} = \alpha_{yr,r,g}^{abs} \tilde{md}_{yr,m,g}\]

source
SLiDE._disagg_bop!Function

bopdef0(yr,r), balance of payments (closure parameter)

\[\bar{bop}_{yr,r} = \sum_{g} \left( \bar{m}_{yr,r,g} - \bar{x}_{yr,r,g} \right)\]

source
SLiDE._disagg_pt0Function

pt0,

\[\begin{aligned} \bar{pt}_{yr,r,g} = &\left(1 - \bar{ta}_{yr,r,g} \right) \bar{a}_{yr,r,g} + \bar{rx}_{yr,r,g} \\ - &\left(1 + \bar{tm}_{yr,r,g} \right) \bar{m}_{yr,r,g} - \sum_{m} \bar{md}_{yr,r,m,g} \end{aligned}\]

source
SLiDE._disagg_dc0!Function

dc0,

\[\bar{dc}_{yr,r,g} = \bar{s}_{yr,r,g} - \bar{x}_{yr,r,g} + \bar{rx}_{yr,r,g}\]

source
SLiDE._disagg_dd0max!Function

dd0max(yr,r,g), maximum regional demand from local market

\[\hat{dd}_{yr,r,g} = \min\left\{\bar{pt}_{yr,r,g}, \bar{dc}_{yr,r,g} \right\}\]

source
SLiDE._disagg_dd0!Function

dd0(yr,r,g), regional demand from local market

\[\bar{dd}_{yr,r,g} = \rho_{r,g}^{cfs} \hat{dd}_{yr,r,g}\]

source
SLiDE._disagg_nd0!Function

nd0_(yr,r,g), regional demand from national market

\[\bar{nd}_{yr,r,g} = \bar{pt}_{yr,r,g} - \bar{dd}_{yr,r,g}\]

source
SLiDE._disagg_mrgshrFunction

mrgshr(yr,r,m), share of margin demand by region

\[\alpha_{yr,r,m}^{md} = \frac{\sum_{g}\bar{md}_{yr,r,m,g}}{\sum_{r,g}\bar{md}_{yr,r,m,g}}\]

source
SLiDE._disagg_ms0tot!Function

ms0tot(yr,r,m,g), designate total supply of margins

\[\hat{ms}_{yr,r,m,g} = \alpha_{yr,r,m}^{md} \bar{ms}_{yr,g,m}\]

source
SLiDE._disagg_shrtrd!Function

shrtrd(yr,r,g,m), share of margin total by margin type

\[\beta_{yr,r,g,m}^{mar} = \frac{\hat{ms}_{yr,r,g,m}}{\sum_{m}\hat{ms}_{yr,r,g,m}}\]

source
SLiDE._disagg_dm0!Function

dm0(yr,r,g,m), margin supply from the local market

\[\bar{dm}_{yr,r,g,m} = \min\left\{ \rho_{r,g}^{cfs}\hat{ms}_{yr,r,g,m}, \beta_{yr,r,m,g}^{mar} \left(\bar{dc}_{yr,r,g} - \bar{dd}_{yr,r,g}\right) \right\}\]

source
SLiDE._disagg_nm0!Function

nm0(yr,r,g,m), margin demand from the national market

\[\bar{nm}_{yr,r,g,m} = \hat{ms}_{yr,r,g,m} - \bar{dm}_{yr,r,g,m}\]

source
SLiDE._disagg_xd0!Function

xd0(yr,r,g), regional supply to local market

\[\bar{xd}_{yr,r,g} = \sum_{m}\bar{dm}_{yr,r,g,m} + \bar{dd}_{yr,r,g}\]

source
SLiDE._disagg_xn0!Function

xn0(yr,r,g), regional supply to national market

\[\bar{xn}_{yr,r,g} = \bar{s}_{yr,r,g} + \bar{rx}_{yr,r,g} - \bar{xd}_{yr,r,g} - \bar{x}_{yr,r,g}\]

source
SLiDE._disagg_hhadj!Function

hhadj(yr,r), household adjustment

\[\begin{aligned} \bar{adj^{hh}}_{yr,r} = &\bar{c}_{yr,r} \\ &- \sum_{s}\left( \bar{ld}_{yr,r,s} + \bar{kd}_{yr,r,s} + \bar{yh}_{yr,r,s} \right) - \bar{bop}_{yr,r} \\ &- \sum_{s}\left( \bar{ta}_{yr,r,s}\bar{a0}_{yr,r,s} + \bar{tm}_{yr,r,s}\bar{m}_{yr,r,s} + \bar{ty}_{yr,r,s}\sum_{g}\bar{ys}_{yr,r,s,g} \right) \\ &+ \sum_{s}\left( \bar{g}_{yr,r,s} + \bar{i}_{yr,r,s} \right) \end{aligned}\]

source