Parameters

SLiDE.disaggregate_energy!Function

This function disaggregates national-level model parameters to the regional level and introduces new parameters.

Arguments

  • dataset::Dataset identifier
  • d::Dict of model parameters
  • set::Dict of Arrays describing parameter indices (years, regions, goods, sectors, etc.)
source
SLiDE._disagg_energy_md0!Function

md0(yr,r,m,g=e), margin demand

\[md_{yr,r,m,g} = mrgshr_{yr,r,m,g} \cdot \sum_{sec} emrg_{yr,r,src\rightarrow g, sec}\]

source
SLiDE._disagg_energy_mrgshr!Function

\[\begin{aligned} mrgshr_{yr,r,m,g=trn} &= \dfrac {md_{yr,r,m,g=trn}} {\sum_m md_{yr,r,m,g=trn}} \\ mrgshr_{yr,r,m,g=trd} &= 1 - mrgshr_{yr,r,m,g=trn} \end{aligned}\]

source
SLiDE._disagg_energy_cd0!Function

cd0(yr,r,g=e), national final consumption

\[\bar{cd}_{yr,r,g} = \left\{ ed \left(yr,r,src\rightarrow g, sec\right) \;\vert\; yr,\, r,\, g,\, sec=res \right\}\]

source
SLiDE._disagg_energy_ys0!Function

For $e\neq oil$,

\[q_{yr,r,src} = \left\{ energy(yr,r,src,sec) \;\vert\; sec=supply \right\} \\ v_{yr,r,src=e} \text{ [billion USD]} = \dfrac{1}{10^3} \cdot \dfrac {\tilde{q}_{yr,r,src}} {\bar{ps}_{yr,src}}\]

For $e=oil$

\[\begin{aligned} q_{yr,r} \text{ [trillion btu]} &= \left\{ energy(yr,r,src,sec) \;\vert\; src=cru,\, sec=ref \right\} \\ v \text{ [billion USD]} &= \left\{ ned_{yr,r,src=oil,sec} \;\vert\; src=oil \right\} \\&\\ v_{yr,r,src=oil} &= \dfrac {q_{yr,r}} {\sum_{r} q_{yr,r}} \cdot \sum_{r,sec} v_{yr,r,src,sec} \end{aligned}\]

\[ys_{yr,r,s=e,g=e} = v_{yr,r,src=e} \circ \vec{1}_{s=g} \circ map_{src\rightarrow g}\]

source
SLiDE._disagg_energy_id0!Function

id0(yr,r,g=e,s), regional intermediate demand

\[id_{yr,r,g,s} = \begin{cases} \sum_{sec} \left( ed_{yr,r,src\rightarrow g, sec} \cdot \alpha^{inp}_{yr,r,g,s,sec} \right) & e \in g \\ id_{yr,r,g,s} & e\ni g \end{cases}\]

source
SLiDE._disagg_energy_inpshr!Function

\[\begin{aligned} inp_{yr,r,g,s,sec} &= \big\{ id_{yr,r,g,s} \circ map_{s\rightarrow sec} \;\vert\; yr,\, r,\, src\in g,\, s \\&\qquad\wedge\; pctgen_{yr,r,src\rightarrow g,sec} > 0.01 \big\} \\&\\ \alpha^{inp}_{yr,r,g,s,sec} &= \dfrac {inp_{yr,r,g,s,sec}} {\sum_s inp_{yr,r,g,s,sec}} \end{aligned}\]

\[\begin{aligned} inp_{yr,r,g,s,sec} &= \big\{ inp_{yr,r,g,s,sec} \;\vert\; yr,\, r,\, src\in g,\, s,\, sec \\&\qquad\wedge\; ed_{yr,r,src\rightarrow g,sec} > 0 \\&\qquad\wedge\; ys_{yr,r,s,g=s} > 0 \big\} \\&\\ \hat{\alpha}^{inp}_{yr,r,g,s,sec} &= \dfrac {\sum_r inp_{yr,r,g,s,sec}} {\sum_{r,s} inp_{yr,r,g,s,sec}} \end{aligned}\]

\[\alpha^{inp}_{yr,r,g,s,sec} = \begin{cases} \alpha^{inp}_{yr,r,g,s,sec} & \sum_s inp_{yr,r,g,s,sec} \neq 0 \\ \hat{\alpha}^{inp}_{yr,r,g,s,sec} & \sum_s inp_{yr,r,g,s,sec} = 0 \end{cases}\]

source
SLiDE._disagg_energy_m0!Function

m0(yr,r,g=ele), foreign imports

\[\bar{m}_{yr,r,g=ele} = \left\{ trdele \left(yr,r,t\right) \;\vert\; yr,\, r,\, t=imports \right\}\]

source
SLiDE._disagg_energy_x0!Function

x0(yr,r,g=ele), foreign exports

\[\bar{x}_{yr,r,g=ele} = \left\{ trdele \left(yr,r,t\right) \;\vert\; yr,\, r,\, t=exports \right\}\]

source