SLiDE.calibrate_nationalFunction
calibrate_national(dataset::Dataset, io::Dict, set::Dict)
calibrate_national(io::Dict, set::Dict, year::Integer)

Arguments

  • d::Dict of DataFrames containing the model data.
  • set::Dict of Arrays describing parameter indices (years, regions, goods, sectors, etc.)
  • year::Int: year for which to perform calibration

Returns

  • d::Dict of DataFrames containing the model data
source
SLiDE._national_calibration_inputFunction
_national_calibration_input(d::Dict, set::Dict, year::Int)
_national_calibration_input(d::Dict, set::Dict)

This function prepares the input for the calibration routine:

  1. Select parameters relevant to the calibration routine.
  2. For all parameters except taxes (ta0, tm0), set negative values to zero: $x = max\left\{0, x\right\}$
  3. In the case of final demand, only set negative values to zero for fd = pce: $fd_{g,fd} = max\{0, fd_{g,fd}\}$
  4. Fill all "missing" values with zeros to generate a complete dataset. This is relevant to how the penalty for missing keys is applied in the objective function.

Arguments

  • d::Dict{Symbol,DataFrame}: all input parameters
  • set::Dict of Arrays describing parameter indices (years, regions, goods, sectors, etc.)
  • year::Int overwhich to calibrate

Returns

  • d::Dict{Symbol, Dict}: input variables
  • set::Dict of Arrays describing parameter indices (years, regions, goods, sectors, etc.), updated to include necessary set permutations.
source