SLiDE.calibrate_national — Functioncalibrate_national(dataset::Dataset, io::Dict, set::Dict)
calibrate_national(io::Dict, set::Dict, year::Integer)Arguments
- d::Dictof DataFrames containing the model data.
- set::Dictof Arrays describing parameter indices (years, regions, goods, sectors, etc.)
- year::Int: year for which to perform calibration
Returns
- d::Dictof DataFrames containing the model data
SLiDE._national_calibration_input — Function_national_calibration_input(d::Dict, set::Dict, year::Int)
_national_calibration_input(d::Dict, set::Dict)This function prepares the input for the calibration routine:
- Select parameters relevant to the calibration routine.
- For all parameters except taxes (ta0, tm0), set negative values to zero: $x = max\left\{0, x\right\}$
- In the case of final demand, only set negative values to zero for fd = pce: $fd_{g,fd} = max\{0, fd_{g,fd}\}$
- Fill all "missing" values with zeros to generate a complete dataset. This is relevant to how the penalty for missing keys is applied in the objective function.
Arguments
- d::Dict{Symbol,DataFrame}: all input parameters
- set::Dictof Arrays describing parameter indices (years, regions, goods, sectors, etc.)
- year::Intoverwhich to calibrate
Returns
- d::Dict{Symbol, Dict}: input variables
- set::Dictof Arrays describing parameter indices (years, regions, goods, sectors, etc.), updated to include necessary set permutations.