SLiDE.calibrate_national
— Functioncalibrate_national(dataset::Dataset, io::Dict, set::Dict)
calibrate_national(io::Dict, set::Dict, year::Integer)
Arguments
d::Dict
of DataFrames containing the model data.set::Dict
of Arrays describing parameter indices (years, regions, goods, sectors, etc.)year::Int
: year for which to perform calibration
Returns
d::Dict
of DataFrames containing the model data
SLiDE._national_calibration_input
— Function_national_calibration_input(d::Dict, set::Dict, year::Int)
_national_calibration_input(d::Dict, set::Dict)
This function prepares the input for the calibration routine:
- Select parameters relevant to the calibration routine.
- For all parameters except taxes (ta0, tm0), set negative values to zero: $x = max\left\{0, x\right\}$
- In the case of final demand, only set negative values to zero for
fd = pce
: $fd_{g,fd} = max\{0, fd_{g,fd}\}$ - Fill all "missing" values with zeros to generate a complete dataset. This is relevant to how the penalty for missing keys is applied in the objective function.
Arguments
d::Dict{Symbol,DataFrame}
: all input parametersset::Dict
of Arrays describing parameter indices (years, regions, goods, sectors, etc.)year::Int
overwhich to calibrate
Returns
d::Dict{Symbol, Dict}
: input variablesset::Dict
of Arrays describing parameter indices (years, regions, goods, sectors, etc.), updated to include necessary set permutations.