Parsing
Edit
SLiDE.Add
— Typemutable struct Add <: Edit
col::Symbol
val::Any
end
Add new column col
filled with val
Arguments
col::Symbol
: name of new columnval::Any
: value to add to new column
SLiDE.Combine
— Typemutable struct Combine <: Edit
operation::String
output::Array{Symbol,1}
end
Arguments
operation::String
: operation to perform (+, -, *, /)output::Array{Symbol,1}
SLiDE.Concatenate
— Typemutable struct Concatenate <: Edit
col::Array{Symbol,1}
on::Array{Symbol,1}
var::Symbol
end
Concatenate side-by-side DataFrames into one normal-form DataFrame.
Arguments
col::Array{Symbol,1}
: final column nameson::Array{Symbol,1}
: column name indicator specifying where to stackvar::Symbol
: column name for storing indicator
SLiDE.Describe
— Typemutable struct Describe <: Edit
col::Symbol
end
This DataType is required when multiple DataFrames will be appended into one output file (say, if multiple sheets from an XLSX file are included). Before the DataFrames are appended, a column col
will be added and filled with the value in the file descriptor. !!!! Does it make sense to have a DataType with one field?
Arguments
col::Symbol
: name of new column
SLiDE.Deselect
— Typemutable struct Deselect <: Edit
col::Array{Symbol,1}
operation::String
end
Arguments
col::Array{Symbol,1}
: name of column containing data to removeoperation::String
: how to determine what to drop
SLiDE.Drop
— Typemutable struct Drop <: Edit
col::Symbol
val::Any
operation::String
end
Remove information from the dataframe - either an entire column or rows containing specified values.
Arguments
col::Symbol
: name of column containing data to removeval::Any
: value to dropoperation::String
: how to determine what to drop
SLiDE.Group
— Typemutable struct Group <: Edit
file::String
from::Symbol
to::Array{Symbol,1}
input::Symbol
output::Array{Symbol,1}
end
Use to edit files containing data in successive dataframes with an identifying header cell or row.
Arguments
file::String
: mapping .csv file name in the coremaps directory. The mapping file should correlate with the header information identifying each data group. It will be used to separate the header rows from data.from::Symbol
: name of the mapping column containing input valuesto::Array{Symbol,1}
: name of the mapping column containing output valuesinput::Symbol
: name of the input column containingoutput::Array{Symbol,1}
: name of the output column created
SLiDE.Map
— Typemutable struct Map <: Edit
file::Any
from::Array{Symbol,1}
to::Array{Symbol,1}
input::Array{Symbol,1}
output::Array{Symbol,1}
kind::Symbol
end
Define an output
column containing values based on those in an input
column. The mapping columns from
-> to
are contained in a .csv file
in the coremaps directory. The columns input
and from
should contain the same values, as should output
and to
.
Arguments
file::Any
: mapping .csv file name in the coremaps directoryfrom::Array{Symbol,1}
: name of the mapping column containing input valuesto::Array{Symbol,1}
: name of the mapping column containing output valuesinput::Array{Symbol,1}
: name of the input column to mapoutput::Array{Symbol,1}
: name of the output column createdkind::Symbol
: type of join to perform.
SLiDE.Match
— Typemutable struct Match <: Edit
on::Regex
input::Symbol
output::Array{Symbol,1}
end
Extract values from the specified column into a column or columns based on the specified regular expression.
Arguments
on::Regex
: string indicating where to splitinput::Symbol
: column to splitoutput::Array{Symbol,1}
: column names to label text surrounding the split
SLiDE.Melt
— Typemutable struct Melt <: Edit
on::Array{Symbol,1}
var::Symbol
val::Symbol
end
Normalize the dataframe by 'melting' columns into rows, lengthening the dataframe by duplicating values in the column on
into new rows and defining 2 new columns: 1. var
with header names from the original dataframe. 2. val
with column values from the original dataframe. This operation can only be performed once per dataframe.
Arguments
on::Array{Symbol,1}
: name of column(s) NOT included in meltvar::Symbol
: name of column containing header NAMES from the original dataframeval::Symbol
: name of column containing VALUES from the original dataframe
SLiDE.Operate
— Typemutable struct Operate <: Edit
operation::String
from::Array{Symbol,1}
to::Array{Symbol,1}
input::Array{Symbol,1}
output::Symbol
end
Perform an arithmetic operation across multiple DataFrame columns.
Arguments
operation::String
: operation to perform (+, -, *, /)from::Array{Symbol,1}
: name of original comment column (ex. units)to::Array{Symbol,1}
: name of new comment column (ex. units)input::Array{Symbol,1}
: names of columns on which to operateoutput::Symbol
: name of result column
SLiDE.Order
— Typemutable struct Order <: Edit
col::Array{Symbol,1}
type::Array{DataType,1}
end
Rearranges columns in the order specified by cols
and sets them to the specified type.
Arguments
col::Array{Symbol,1}
: Ordered list of DataFrame columnstype::Array{DataType,1}
: Ordered column types.
SLiDE.OrderedGroup
— Typemutable struct OrderedGroup <: Edit
on::Array{Symbol,1}
var::Symbol
val::Array{Any,1}
end
maybe, if on and var are the same, we can just fill in groups? i'm thinking SCTG group.
Arguments
on::Array{Symbol,1}
: name of columns containing information specific to a particular levelvar::Symbol
: name of column containing information of what we will unstack onval::Array{Any,1}
: ordered list of values to unstack on. If empty, unstack in order of appearance.
SLiDE.Rename
— Typemutable struct Rename <: Edit
from::Symbol
to::Symbol
end
Change column name from
-> to
.
Arguments
from::Symbol
: original column nameto::Symbol
: new column name
SLiDE.Replace
— Typemutable struct Replace <: Edit
col::Symbol
from::Any
to::Any
end
Replace values in col
from
-> to
.
Arguments
col::Symbol
: name of column containing values to be replacedfrom::Any
: value to replaceto::Any
: new value
SLiDE.Stack
— Typemutable struct Stack <: Edit
on::Array{Symbol,1}
var::Symbol
val::Symbol
end
Normalize the dataframe by 'melting' columns into rows, lengthening the dataframe by duplicating values in the column on
into new rows and defining 2 new columns: 1. var
with header names from the original dataframe. 2. val
with column values from the original dataframe. This operation can only be performed once per dataframe.
Arguments
on::Array{Symbol,1}
: name of column(s) NOT included in meltvar::Symbol
: name of column containing header NAMES from the original dataframeval::Symbol
: name of column containing VALUES from the original dataframe
File
SLiDE.CSVInput
— Typemutable struct CSVInput <: File
name::String
descriptor::String
end
Read .csv file
Arguments
name::String
: input file namedescriptor::String
: file descriptor
SLiDE.DataInput
— Typemutable struct DataInput <: File
name::String
descriptor::String
col::Array{Symbol,1}
end
Read .csv file with specific column names
Arguments
name::String
: input file namedescriptor::String
: file descriptorcol::Array{Symbol,1}
: data column names
SLiDE.GAMSInput
— Typemutable struct GAMSInput <: File
name::String
col::Array{Symbol,1}
end
Read .map or .set file
Arguments
name::String
: input file namecol::Array{Symbol,1}
: column names
SLiDE.SetInput
— Typemutable struct SetInput <: File
name::String
descriptor::Symbol
end
Read .csv file with specific column names
Arguments
name::String
: input file namedescriptor::Symbol
: file descriptor
SLiDE.XLSXInput
— Typemutable struct XLSXInput <: File
name::String
sheet::String
range::String
descriptor::String
end
Read .xlsx file.
Arguments
name::String
: input file namesheet::String
: input sheet namerange::String
: input sheet rangedescriptor::String
: file descriptor