B-O LID - Accelerated Test#
Example: Boron-oxygen light-induced degradation (B-O LID) progression in accelerated tests#
This library can also be used to model B-O LID, as the defect states and transitions can be modeled in the same way as LETID. See kinetic_parameters.json for B-O LID kinetic parameters used in this example.
In this example, we will model B-O LID progression in a test similar to IEC 61215 MQT 19.1 IEC 61215 MQT 19.1, which prescribes \(\ge \) 10 \(kWh/m^2\) of 1-sun illumination with maximum power point tracking at \(50\degree C\).
Objectives:
Define necessary solar cell device parameters
Define necessary degradation parameters: degraded lifetime and defect states, this time using B-O LID kinetics
Create timeseries of temperature and current injection
Run through timeseries, calculating defect states
Calculate device degradation and plot
# if running on google colab, uncomment the next line and execute this cell to install the dependencies and prevent "ModuleNotFoundError" in later cells:
# !pip install pvdeg==0.3.3
from pvdeg import letid, collection, utilities, DATA_DIR
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import pvlib
# This information helps with debugging and getting support :)
import sys, platform
import pvdeg
print("Working on a ", platform.system(), platform.release())
print("Python version ", sys.version)
print("Pandas version ", pd.__version__)
print("pvlib version ", pvlib.__version__)
print("pvdeg version ", pvdeg.__version__)
Working on a Linux 6.5.0-1025-azure
Python version 3.11.9 (main, Jul 15 2024, 21:50:21) [GCC 11.4.0]
Pandas version 2.2.2
pvlib version 0.10.3
pvdeg version 0.1.dev1+g4f38099
Device parameters#
To define a device, we need to define several important quantities about the device: wafer thickness (in \(\mu m\)), rear surface recombination velocity (in cm/s), and cell area (in cm2).
wafer_thickness = 180 # um
s_rear = 46 # cm/s
cell_area = 243 # cm^2
Other device parameters
Other required parameters are base diffusivity (in \(cm^2/s\)), and optical generation profile, which allow us to estimate current collection in the device.
generation_df = pd.read_excel(os.path.join(DATA_DIR, 'PVL_GenProfile.xlsx'), header = 0) # this is an optical generation profile generated by PVLighthouse's OPAL2 default model for 1-sun, normal incident AM1.5 sunlight on a 180-um thick SiNx-coated, pyramid-textured wafer.
generation = generation_df['Generation (cm-3s-1)']
depth = generation_df['Depth (um)']
d_base = 27 # cm^2/s electron diffusivity. See https://www2.pvlighthouse.com.au/calculators/mobility%20calculator/mobility%20calculator.aspx for details
Degradation parameters#
To model the device’s degradation, we need to define several more important quantities about the degradation the device will experience. These include undegraded and degraded lifetime (in \(\mu s\)).
tau_0 = 115 # us, carrier lifetime in non-degraded states, e.g. LETID/LID states A or C
tau_deg = 55 # us, carrier lifetime in fully-degraded state, e.g. LETID/LID state B
Let’s see how much maximum power degradation these parameters will result in:
letid.calc_pmp_loss_from_tau_loss(tau_0, tau_deg, cell_area, wafer_thickness, s_rear) # returns % power loss, pmp_0, pmp_deg
(0.03495240755084558, 5.663466529792824, 5.465514739492932)
Remaining degradation parameters:
The rest of the quantities to define are: the initial percentage of defects in each state (A, B, and C), and the dictionary of mechanism parameters.
In this example, we’ll assume the device starts in the fully-undegraded state (100% state A), and we’ll use the parameters for B-O LID
# starting defect state percentages
nA_0 = 100
nB_0 = 0
nC_0 = 0
# Here's a list of the possible sets of kinetic parameters from kinetic_parameters.json:
utilities.get_kinetics()
('Choose a set of kinetic parameters:',
['repins',
'repins_best_case',
'kwapil',
'bredemeier',
'wyller_wafer',
'wyller_cell',
'graf',
'dark letid',
'bo-lid',
'Lit BO-LID + fit to Qcells destab'])
mechanism_params = utilities.get_kinetics('bo-lid')
print(mechanism_params)
{'mechanism': 'BO-LID', 'v_ab': 4000.0, 'v_ba': 10000000000000.0, 'v_bc': 12500000000.0, 'v_cb': 532000.0, 'ea_ab': 0.475, 'ea_ba': 1.32, 'ea_bc': 0.98, 'ea_cb': 0.87, 'suns_ab': 0.1, 'suns_bc': 2.7, 'temperature_ab': 400, 'temperature_bc': 434, 'tau_ab': 140, 'tau_bc': 165, 'x_ab': 0, 'x_ba': 1, 'x_bc': 0, 'structure_ab': 'wafer', 'structure_bc': 'wafer', 'thickness_ab': 200, 'thickness_bc': 200, 'srv_ab': 0, 'srv_bc': 0, 'comments': ''}
Set up timeseries#
In this example, we are going to model test with constant temperature and injection. IEC 61215 MQT 19.1 prescribes 10 \(kWh/m^2\) of 1-sun illumination (i.e., 10 hours of 1-sun) with maximum power point tracking at \(50\degree C\). For most typical c-Si modules, MPP injection is roughly \(I_{sc}-I_{mp}\), or roughly equal to \(0.05\times I_{sc}\). So we will set injection equal to 0.05 “suns” of injection.
We will create a pandas datetime series and calculate the changes in defect states for each timestep. As B-O LID can initially proceed quickly, we will create a timeseries with 1-second intervals for the first 10 minutes, then proceed with 1-minute intervals
temperature = 50 # degrees celsius
suns = 0.05 # "suns" of injection, e.g 1-sun illumination at open circuit would be 1; dark current injection is given as a fraction of Isc, e.g., injecting Isc would be 1. For this example we assume injection is 0.05*Isc.
timesteps_initial = pd.date_range(start = '2022-01-01 00:00:00', end = '2022-01-01 00:10:00', freq = 'S') # 10 minutes of 1-second interval timesteps. In general, we should select small timesteps unless we are sure defect reactions are proceeding very slowly
timesteps = pd.date_range(start = '2022-01-01 00:10:00', end = '2022-01-01 10:00:00', freq = 'min') # a total of 10 hours of exposure
timesteps = pd.DataFrame(timesteps, columns = ['Datetime'])
timesteps_initial = pd.DataFrame(timesteps_initial, columns = ['Datetime'])
timesteps = pd.concat([timesteps_initial, timesteps]) # concatenate the two time series
timesteps = timesteps.sort_values(by = 'Datetime')
timesteps.reset_index(inplace = True, drop = True)
temps = np.full(len(timesteps), temperature)
injection = np.full(len(timesteps), suns)
timesteps['Temperature'] = temps
timesteps['Injection'] = injection
timesteps[['NA', 'NB', 'NC', 'tau']] = np.nan # create columns for defect state percentages and lifetime, fill with NaNs for now, to fill iteratively below
timesteps.loc[0, ['NA', 'NB', 'NC']] = nA_0, nB_0, nC_0 # assign first timestep defect state percentages
timesteps.loc[0, 'tau'] = letid.tau_now(tau_0, tau_deg, nB_0) # calculate tau for the first timestep
/tmp/ipykernel_2128/928104463.py:4: FutureWarning: 'S' is deprecated and will be removed in a future version, please use 's' instead.
timesteps_initial = pd.date_range(start = '2022-01-01 00:00:00', end = '2022-01-01 00:10:00', freq = 'S') # 10 minutes of 1-second interval timesteps. In general, we should select small timesteps unless we are sure defect reactions are proceeding very slowly
for index, timestep in timesteps.iterrows():
# first row tau has already been assigned
if index == 0:
pass
# loop through rows, new tau calculated based on previous NB. Reaction proceeds based on new tau.
else:
n_A = timesteps.at[index-1, 'NA']
n_B = timesteps.at[index-1, 'NB']
n_C = timesteps.at[index-1, 'NC']
tau = letid.tau_now(tau_0, tau_deg, n_B)
jsc = collection.calculate_jsc_from_tau_cp(tau, wafer_thickness, d_base, s_rear, generation, depth)
temperature = timesteps.at[index, 'Temperature']
injection = timesteps.at[index, 'Injection']
# calculate defect reaction kinetics: reaction constant and carrier concentration factor.
k_AB = letid.k_ij(mechanism_params['v_ab'], mechanism_params['ea_ab'], temperature)
k_BA = letid.k_ij(mechanism_params['v_ba'], mechanism_params['ea_ba'], temperature)
k_BC = letid.k_ij(mechanism_params['v_bc'], mechanism_params['ea_bc'], temperature)
k_CB = letid.k_ij(mechanism_params['v_cb'], mechanism_params['ea_cb'], temperature)
x_ab = letid.carrier_factor(tau, 'ab', temperature, injection, jsc, wafer_thickness, s_rear, mechanism_params)
x_ba = letid.carrier_factor(tau, 'ba', temperature, injection, jsc, wafer_thickness, s_rear, mechanism_params)
x_bc = letid.carrier_factor(tau, 'bc', temperature, injection, jsc, wafer_thickness, s_rear, mechanism_params)
# calculate the instantaneous change in NA, NB, and NC
dN_Adt = (k_BA * n_B * x_ba) - (k_AB * n_A * x_ab)
dN_Bdt = (k_AB * n_A * x_ab) + (k_CB * n_C) - ((k_BA * x_ba + k_BC * x_bc) * n_B)
dN_Cdt = (k_BC * n_B * x_bc) - (k_CB * n_C)
t_step = (timesteps.at[index, 'Datetime'] - timesteps.at[index-1,'Datetime']).total_seconds()
# assign new defect state percentages
timesteps.at[index, 'NA'] = n_A + dN_Adt*t_step
timesteps.at[index, 'NB'] = n_B + dN_Bdt*t_step
timesteps.at[index, 'NC'] = n_C + dN_Cdt*t_step
Finish calculating degraded device parameters.#
Now that we have calculated defect states, we can calculate all the quantities that depend on defect states.
timesteps['tau'] = letid.tau_now(tau_0, tau_deg, timesteps['NB'])
# calculate device Jsc for every timestep. Unfortunately this requires an integration so I think we have to run through a loop. Device Jsc allows calculation of device Voc.
for index, timestep in timesteps.iterrows():
jsc_now = collection.calculate_jsc_from_tau_cp(timesteps.at[index, 'tau'], wafer_thickness, d_base, s_rear, generation, depth)
timesteps.at[index, 'Jsc'] = jsc_now
timesteps.at[index, 'Voc'] = letid.calc_voc_from_tau(timesteps.at[index, 'tau'], wafer_thickness, s_rear, jsc_now, temperature = 25)
# this function quickly calculates the rest of the device parameters: Isc, FF, max power, and normalized max power
timesteps = letid.calc_device_params(timesteps, cell_area = 243)
timesteps['time (days)'] = (timesteps['Datetime'] - timesteps.iloc[0]['Datetime']).dt.total_seconds()/86400 # create a column for days elapsed
timesteps
Datetime | Temperature | Injection | NA | NB | NC | tau | Jsc | Voc | Isc | FF | Pmp | Pmp_norm | time (days) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2022-01-01 00:00:00 | 50 | 0.05 | 100.000000 | 0.000000 | 0.000000e+00 | 115.000000 | 41.590997 | 0.666327 | 10.106612 | 0.840987 | 5.663467 | 1.000000 | 0.000000 |
1 | 2022-01-01 00:00:01 | 50 | 0.05 | 99.984366 | 0.015634 | 0.000000e+00 | 114.980390 | 41.590936 | 0.666324 | 10.106597 | 0.840986 | 5.663426 | 0.999993 | 0.000012 |
2 | 2022-01-01 00:00:02 | 50 | 0.05 | 99.968735 | 0.031265 | 1.016487e-07 | 114.960790 | 41.590875 | 0.666321 | 10.106583 | 0.840986 | 5.663386 | 0.999986 | 0.000023 |
3 | 2022-01-01 00:00:03 | 50 | 0.05 | 99.953106 | 0.046893 | 3.049294e-07 | 114.941200 | 41.590814 | 0.666317 | 10.106568 | 0.840985 | 5.663345 | 0.999979 | 0.000035 |
4 | 2022-01-01 00:00:04 | 50 | 0.05 | 99.937480 | 0.062520 | 6.098257e-07 | 114.921620 | 41.590753 | 0.666314 | 10.106553 | 0.840984 | 5.663305 | 0.999971 | 0.000046 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
1187 | 2022-01-01 09:56:00 | 50 | 0.05 | 0.364232 | 82.313555 | 1.732221e+01 | 60.591179 | 41.280510 | 0.653103 | 10.031164 | 0.838627 | 5.494163 | 0.970106 | 0.413889 |
1188 | 2022-01-01 09:57:00 | 50 | 0.05 | 0.360820 | 82.284870 | 1.735431e+01 | 60.601170 | 41.280615 | 0.653106 | 10.031189 | 0.838627 | 5.494211 | 0.970115 | 0.414583 |
1189 | 2022-01-01 09:58:00 | 50 | 0.05 | 0.357440 | 82.256164 | 1.738640e+01 | 60.611172 | 41.280719 | 0.653110 | 10.031215 | 0.838628 | 5.494259 | 0.970123 | 0.415278 |
1190 | 2022-01-01 09:59:00 | 50 | 0.05 | 0.354092 | 82.227438 | 1.741847e+01 | 60.621185 | 41.280824 | 0.653113 | 10.031240 | 0.838629 | 5.494307 | 0.970132 | 0.415972 |
1191 | 2022-01-01 10:00:00 | 50 | 0.05 | 0.350776 | 82.198691 | 1.745053e+01 | 60.631208 | 41.280929 | 0.653117 | 10.031266 | 0.838629 | 5.494355 | 0.970140 | 0.416667 |
1192 rows × 14 columns
Plot the results#
from cycler import cycler
plt.style.use('default')
fig, ax = plt.subplots()
ax.set_prop_cycle(cycler('color', ['tab:blue', 'tab:orange', 'tab:green']) + cycler('linestyle', ['-', '--', '-.']))
ax.plot(timesteps['time (days)'], timesteps[['NA', 'NB', 'NC']].values)
ax.legend(labels = ['$N_A$', '$N_B$', '$N_C$'], loc = 'upper left')
ax.set_ylabel('Defect state percentages [%]')
ax.set_xlabel('Time [days]')
ax2 = ax.twinx()
ax2.plot(timesteps['time (days)'], timesteps['Pmp_norm'], c = 'black', label = 'Normalized $P_{MP}$')
ax2.legend(loc = 'upper right')
ax2.set_ylabel('Normalized $P_{MP}$')
ax.set_title('Accelerated B-O LID Test\n'fr'{temperature}$\degree$C, {suns}$\times I_{{SC}}$ injection')
plt.show()