Python API Docs#
- nrel.routee.powertrain.io.load.list_available_models(local: bool = True, external: bool = True) List[str] [source]#
returns a list of all the available pretrained models
- Parameters:
local -- include local models?
external -- include external models?
Returns: a list of model keys
- nrel.routee.powertrain.io.load.load_model(name: str | Path) Model [source]#
A helper function to load a pretrained model. If the model is a file, it will be loaded from disk. If the model is a name, it will be loaded from the default model catalog (local or external).
- Parameters:
name -- the name of the file or default model to load
Returns: a routee-powertrain model
Examples:
>>> import nrel.routee.powertrain as pt >>> >>> # load a default model >>> model = pt.load_model("2016_HYUNDAI_Elantra_4cyl_2WD") >>> >>> # load a model from file >>> model = pt.load_model("MyModel.json")
- nrel.routee.powertrain.io.load.load_sample_route(name: str | None = None) DataFrame [source]#
A helper function to load sample routes
- Parameters:
name -- The name of the route. Defaults to "sample_route".
Returns: a pandas DataFrame representing the route
- class nrel.routee.powertrain.core.model.Model(estimators: Dict[str, Estimator], metadata: Metadata, errors: ModelErrors)[source]#
A RouteE-Powertrain vehicle model represents a single vehicle (i.e. a 2016 Toyota Camry with a 1.5 L gasoline engine).
- contour(estimator_id: str, x_feature: str, y_feature: str, n_samples: int | None = 100, output_path: str | None = None)[source]#
generates a contour plot of the two test features: x_feature and y_feature. for the given estimator id
- Parameters:
estimator_id -- the estimator id for generating the plots
x_feature -- one of the features used to generate the energy matrix and will be the x-axis feature
y_feature -- one of the features used to generate the energy matrix and will be the y-axis feature
n_samples -- the number of samples used to generate the plots
output_path -- an optional path to save the plots as png files.
- classmethod from_dict(input_dict: dict) Model [source]#
Load a vehicle model from a python dictionary
- classmethod from_file(file: str | Path)[source]#
Load a vehicle model from a file.
- Parameters:
file -- the path to the file to load
Returns: a powertrain vehicle
- classmethod from_url(url: str) Model [source]#
Attempts to read a file from a url.
- Parameters:
url -- the url to download the file from
Returns: a powertrain vehicle
- predict(links_df: DataFrame, feature_columns: List[str] | None = None, distance_column: str | None = None, apply_real_world_adjustment: bool = True) DataFrame [source]#
Predict absolute energy consumption for each link
- Parameters:
links_df -- a dataframe containing the links to predict on
feature_columns -- the features to use for prediction
distance_column -- the column to use for distance
apply_real_world_adjustment -- whether to apply a real world adjustment to the predicted energy consumption
Returns: a dataframe containing the predicted energy consumption for each link
- to_file(file: str | Path)[source]#
Save a vehicle model to a file.
- Parameters:
file -- the path to the file to save to
- visualize_features(estimator_id: FeatureSetId, n_samples: int | None = 100, output_path: str | None = None, return_predictions: bool | None = False) Dict[str, 'Series'] | None [source]#
generates test links to independently test the model's features and creates plots of those predictions for the given estimator id
- Parameters:
estimator_id -- the estimator id for generating the plots
n_samples -- the number of samples used to generate the plots
output_path -- an optional path to save the plots as png files.
return_predictions -- if true, returns the dictionary containing the prediction values
Returns: optionally returns a dictionary containing the predictions where the key is the feature tested