"""Special models for surface meteorological data."""
import logging
from fnmatch import fnmatch
from warnings import warn
import numpy as np
from PIL import Image
from sklearn import linear_model
from sup3r.utilities.utilities import RANDOM_GENERATOR, spatial_coarsening
from .linear import LinearInterp
logger = logging.getLogger(__name__)
[docs]
class SurfaceSpatialMetModel(LinearInterp):
"""Model to spatially downscale daily-average near-surface temperature,
relative humidity, and pressure
Note that this model can also operate on temperature_*m,
relativehumidity_*m, and pressure_*m datasets that are not
strictly at the surface but could be near hub height.
"""
TEMP_LAPSE = 6.5 / 1000
"""Temperature lapse rate: change in degrees C/K per meter"""
PRES_DIV = 44307.69231
"""Air pressure scaling equation divisor variable:
101325 * (1 - (1 - topo / PRES_DIV)**PRES_EXP)"""
PRES_EXP = 5.25328
"""Air pressure scaling equation exponent variable:
101325 * (1 - (1 - topo / PRES_DIV)**PRES_EXP)"""
W_DELTA_TEMP = -3.99242830
"""Weight for the delta-temperature feature for the relative humidity
linear regression model."""
W_DELTA_TOPO = -0.01736911
"""Weight for the delta-topography feature for the relative humidity linear
regression model."""
def __init__(
self,
lr_features,
s_enhance,
noise_adders=None,
temp_lapse=None,
w_delta_temp=None,
w_delta_topo=None,
pres_div=None,
pres_exp=None,
interp_method='LANCZOS',
input_resolution=None,
fix_bias=True,
):
"""
Parameters
----------
lr_features : list
List of feature names that this model will operate on for both
input and output. This must match the feature axis ordering in the
array input to generate(). Typically this is a list containing:
temperature_*m, relativehumidity_*m, and pressure_*m. The list can
contain multiple instances of each variable at different heights.
relativehumidity_*m entries must have corresponding temperature_*m
entires at the same hub height.
s_enhance : int
Integer factor by which the spatial axes are to be enhanced.
noise_adders : float | list | None
Option to add gaussian noise to spatial model output. Noise will be
normally distributed with mean of 0 and standard deviation =
noise_adders. noise_adders can be a single value or a list
corresponding to the lr_features list. None is no noise. The
addition of noise has been shown to help downstream temporal-only
models produce diurnal cycles in regions where there is minimal
change in topography. A noise_adders around 0.07C (temperature) and
0.1% (relative humidity) have been shown to be effective. This is
unnecessary if daily min/max temperatures are provided as low res
training features.
temp_lapse : None | float
Temperature lapse rate: change in degrees C/K per meter. Defaults
to the cls.TEMP_LAPSE attribute.
w_delta_temp : None | float
Weight for the delta-temperature feature for the relative humidity
linear regression model. Defaults to the cls.W_DELTA_TEMP
attribute.
w_delta_topo : None | float
Weight for the delta-topography feature for the relative humidity
linear regression model. Defaults to the cls.W_DELTA_TOPO
attribute.
pres_div : None | float
Divisor factor in the pressure scale height equation. Defaults to
the cls.PRES_DIV attribute.
pres_exp : None | float
Exponential factor in the pressure scale height equation. Defaults
to the cls.PRES_EXP attribute.
interp_method : str
Name of the interpolation method to use from PIL.Image.Resampling
(NEAREST, BILINEAR, BICUBIC, LANCZOS)
LANCZOS is default and has been tested to work best for
SurfaceSpatialMetModel.
fix_bias : bool
Some local bias can be introduced by the bilinear interp + lapse
rate, this flag will attempt to correct that bias by using the
low-resolution deviation from the input data
input_resolution : dict | None
Resolution of the input data. e.g. {'spatial': '30km', 'temporal':
'60min'}. This is used to determine how to aggregate
high-resolution topography data.
"""
self._lr_features = lr_features
self._s_enhance = s_enhance
self._noise_adders = noise_adders
self._temp_lapse = temp_lapse or self.TEMP_LAPSE
self._w_delta_temp = w_delta_temp or self.W_DELTA_TEMP
self._w_delta_topo = w_delta_topo or self.W_DELTA_TOPO
self._pres_div = pres_div or self.PRES_DIV
self._pres_exp = pres_exp or self.PRES_EXP
self._fix_bias = fix_bias
self._input_resolution = input_resolution
self._interp_name = interp_method
self._interp_method = getattr(Image.Resampling, interp_method)
if isinstance(self._noise_adders, (int, float)):
self._noise_adders = [self._noise_adders] * len(self._lr_features)
def __len__(self):
"""Get number of model steps (match interface of MultiStepGan)"""
return 1
@staticmethod
def _get_s_enhance(topo_lr, topo_hr):
"""Get the spatial enhancement factor given low-res and high-res
spatial rasters.
Parameters
----------
topo_lr : np.ndarray
low-resolution surface elevation data in meters with shape
(lat, lon)
topo_hr : np.ndarray
High-resolution surface elevation data in meters with shape
(lat, lon)
Returns
-------
s_enhance : int
Integer factor by which the spatial axes are to be enhanced.
"""
assert len(topo_lr.shape) == 2, 'topo_lr must be 2D'
assert len(topo_hr.shape) == 2, 'topo_hr must be 2D'
se0 = topo_hr.shape[0] / topo_lr.shape[0]
se1 = topo_hr.shape[1] / topo_lr.shape[1]
assert se0 % 1 == 0, f'Bad calculated s_enhance on axis 0: {se0}'
assert se1 % 1 == 0, f'Bad calculated s_enhance on axis 1: {se1}'
assert se0 == se1, 'Calculated s_enhance does not match along axis'
return int(se0)
@property
def feature_inds_temp(self):
"""Get the feature index values for the temperature features."""
inds = [
i
for i, name in enumerate(self._lr_features)
if fnmatch(name, 'temperature_*')
]
return inds
@property
def feature_inds_pres(self):
"""Get the feature index values for the pressure features."""
inds = [
i
for i, name in enumerate(self._lr_features)
if fnmatch(name, 'pressure_*')
]
return inds
@property
def feature_inds_rh(self):
"""Get the feature index values for the relative humidity features."""
inds = [
i
for i, name in enumerate(self._lr_features)
if fnmatch(name, 'relativehumidity_*')
]
return inds
@property
def feature_inds_other(self):
"""Get the feature index values for the features that are not
temperature, pressure, or relativehumidity."""
finds_tprh = (
self.feature_inds_temp
+ self.feature_inds_pres
+ self.feature_inds_rh
)
inds = [
i
for i, name in enumerate(self._lr_features)
if i not in finds_tprh
]
return inds
def _get_temp_rh_ind(self, idf_rh):
"""Get the feature index value for the temperature feature
corresponding to a relative humidity feature at the same hub height.
Parameters
----------
idf_rh : int
Index in the feature list for a relativehumidity_*m feature
Returns
-------
idf_temp : int
Index in the feature list for a temperature_*m feature with the
same hub height as the idf_rh input.
"""
name_rh = self._lr_features[idf_rh]
hh_suffix = name_rh.split('_')[-1]
idf_temp = None
for i in self.feature_inds_temp:
same_hh = self._lr_features[i].endswith(hh_suffix)
not_minmax = not any(mm in name_rh for mm in ('_min_', '_max_'))
both_mins = '_min_' in name_rh and '_min_' in self._lr_features[i]
both_maxs = '_max_' in name_rh and '_max_' in self._lr_features[i]
if same_hh and (not_minmax or both_mins or both_maxs):
idf_temp = i
break
if idf_temp is None:
msg = (
'Could not find temperature feature corresponding to '
'"{}" in feature list: {}'.format(name_rh, self._lr_features)
)
logger.error(msg)
raise KeyError(msg)
return idf_temp
[docs]
@classmethod
def fix_downscaled_bias(
cls, single_lr, single_hr, method=Image.Resampling.LANCZOS
):
"""Fix any bias introduced by the spatial downscaling with lapse rate.
Parameters
----------
single_lr : np.ndarray
Single timestep raster data with shape
(lat, lon) matching the low-resolution input data.
single_hr : np.ndarray
Single timestep downscaled raster data with shape
(lat, lon) matching the high-resolution input data.
method : Image.Resampling.LANCZOS
An Image.Resampling method (NEAREST, BILINEAR, BICUBIC, LANCZOS).
NEAREST enforces zero bias but makes slightly more spatial seams.
Returns
-------
single_hr : np.ndarray
Single timestep downscaled raster data with shape
(lat, lon) matching the high-resolution input data.
"""
s_enhance = len(single_hr) // len(single_lr)
re_coarse = spatial_coarsening(
np.expand_dims(single_hr, axis=-1),
s_enhance=s_enhance,
obs_axis=False,
)[..., 0]
bias = re_coarse - single_lr
bc = cls.downscale_arr(bias, s_enhance=s_enhance, method=method)
single_hr -= bc
return single_hr
[docs]
@classmethod
def downscale_arr(
cls, arr, s_enhance, method=Image.Resampling.LANCZOS, fix_bias=False
):
"""Downscale a 2D array of data Image.resize() method
Parameters
----------
arr : np.ndarray
2D raster data, typically spatial daily average data with shape
(lat, lon)
s_enhance : int
Integer factor by which the spatial axes are to be enhanced.
method : Image.Resampling.LANCZOS
An Image.Resampling method (NEAREST, BILINEAR, BICUBIC, LANCZOS).
LANCZOS is default and has been tested to work best for
SurfaceSpatialMetModel.
fix_bias : bool
Some local bias can be introduced by the bilinear interp + lapse
rate, this flag will attempt to correct that bias by using the
low-resolution deviation from the input data
"""
im = Image.fromarray(arr)
im = im.resize(
(arr.shape[1] * s_enhance, arr.shape[0] * s_enhance),
resample=method,
)
out = np.array(im)
if fix_bias:
out = cls.fix_downscaled_bias(arr, out, method=method)
return out
[docs]
def downscale_temp(self, single_lr_temp, topo_lr, topo_hr):
"""Downscale temperature raster data at a single observation.
This model uses a simple lapse rate that adjusts temperature as a
function of elevation. The process is as follows:
- add a scale factor to the low-res temperature field:
topo_lr * TEMP_LAPSE
- perform bilinear interpolation of the scaled temperature field.
- subtract the scale factor from the high-res temperature field:
topo_hr * TEMP_LAPSE
Parameters
----------
single_lr_temp : np.ndarray
Single timestep temperature (deg C) raster data with shape
(lat, lon) matching the low-resolution input data.
topo_lr : np.ndarray
low-resolution surface elevation data in meters with shape
(lat, lon)
topo_hr : np.ndarray
High-resolution surface elevation data in meters with shape
(lat, lon)
Returns
-------
hi_res_temp : np.ndarray
Single timestep temperature (deg C) raster data with shape
(lat, lon) matching the high-resolution output data.
"""
assert len(single_lr_temp.shape) == 2, 'Bad shape for single_lr_temp'
assert len(topo_lr.shape) == 2, 'Bad shape for topo_lr'
assert len(topo_hr.shape) == 2, 'Bad shape for topo_hr'
lower_data = single_lr_temp.copy() + topo_lr * self._temp_lapse
hi_res_temp = self.downscale_arr(
lower_data, self._s_enhance, method=self._interp_method
)
hi_res_temp -= topo_hr * self._temp_lapse
if self._fix_bias:
hi_res_temp = self.fix_downscaled_bias(
single_lr_temp, hi_res_temp, method=self._interp_method
)
return hi_res_temp
[docs]
def downscale_rh(
self, single_lr_rh, single_lr_temp, single_hr_temp, topo_lr, topo_hr
):
"""Downscale relative humidity raster data at a single observation.
Here's a description of the humidity scaling model:
- Take low-resolution and high-resolution daily average
temperature, relative humidity, and topography data.
- Downscale all low-resolution variables using a bilinear image
enhancement
- The target model output is the difference between the
interpolated low-res relative humidity and the true high-res
relative humidity. Calculate this difference as a linear function
of the same difference in the temperature and topography fields.
- Use this linear regression model to calculate high-res relative
humidity fields when provided low-res input of relative humidity
along with low-res/high-res pairs of temperature and topography.
Parameters
----------
single_lr_rh : np.ndarray
Single timestep relative humidity (%) raster data with shape
(lat, lon) matching the low-resolution input data.
single_lr_temp : np.ndarray
Single timestep temperature (deg C) raster data with shape
(lat, lon) matching the low-resolution input data.
single_hr_temp : np.ndarray
Single timestep temperature (deg C) raster data with shape
(lat, lon) matching the high-resolution output data.
topo_lr : np.ndarray
low-resolution surface elevation data in meters with shape
(lat, lon)
topo_hr : np.ndarray
High-resolution surface elevation data in meters with shape
(lat, lon)
Returns
-------
hi_res_rh : np.ndarray
Single timestep relative humidity (%) raster data with shape
(lat, lon) matching the high-resolution output data.
"""
assert len(single_lr_rh.shape) == 2, 'Bad shape for single_lr_rh'
assert len(single_hr_temp.shape) == 2, 'Bad shape for single_hr_temp'
assert len(topo_lr.shape) == 2, 'Bad shape for topo_lr'
assert len(topo_hr.shape) == 2, 'Bad shape for topo_hr'
interp_rh = self.downscale_arr(
single_lr_rh, self._s_enhance, method=self._interp_method
)
interp_temp = self.downscale_arr(
single_lr_temp, self._s_enhance, method=self._interp_method
)
interp_topo = self.downscale_arr(
topo_lr, self._s_enhance, method=self._interp_method
)
delta_temp = single_hr_temp - interp_temp
delta_topo = topo_hr - interp_topo
hi_res_rh = (
interp_rh
+ self._w_delta_temp * delta_temp
+ self._w_delta_topo * delta_topo
)
if self._fix_bias:
hi_res_rh = self.fix_downscaled_bias(
single_lr_rh, hi_res_rh, method=self._interp_method
)
return hi_res_rh
[docs]
def downscale_pres(self, single_lr_pres, topo_lr, topo_hr):
"""Downscale pressure raster data at a single observation.
This model uses a simple exponential scale height that adjusts
temperature as a function of elevation. The process is as follows:
- add a scale factor to the low-res pressure field:
101325 * (1 - (1 - topo_lr / PRES_DIV)**PRES_EXP)
- perform bilinear interpolation of the scaled pressure field.
- subtract the scale factor from the high-res pressure field:
101325 * (1 - (1 - topo_hr / PRES_DIV)**PRES_EXP)
Parameters
----------
single_lr_pres : np.ndarray
Single timestep pressure (Pa) raster data with shape
(lat, lon) matching the low-resolution input data.
topo_lr : np.ndarray
low-resolution surface elevation data in meters with shape
(lat, lon)
topo_hr : np.ndarray
High-resolution surface elevation data in meters with shape
(lat, lon)
Returns
-------
hi_res_pres : np.ndarray
Single timestep pressure (Pa) raster data with shape
(lat, lon) matching the high-resolution output data.
"""
if np.max(single_lr_pres) < 10000:
msg = (
'Pressure data appears to not be in Pa with min/mean/max: '
'{:.1f}/{:.1f}/{:.1f}'.format(
single_lr_pres.min(),
single_lr_pres.mean(),
single_lr_pres.max(),
)
)
logger.warning(msg)
warn(msg)
const = 101325 * (1 - (1 - topo_lr / self._pres_div) ** self._pres_exp)
lr_pres_adj = single_lr_pres.copy() + const
if np.min(lr_pres_adj) < 0.0:
msg = (
'Spatial interpolation of surface pressure '
'resulted in negative values. Incorrectly '
'scaled/unscaled values or incorrect units are '
'the most likely causes. All pressure data should be '
'in Pascals.'
)
logger.error(msg)
raise ValueError(msg)
hi_res_pres = self.downscale_arr(
lr_pres_adj, self._s_enhance, method=self._interp_method
)
const = 101325 * (1 - (1 - topo_hr / self._pres_div) ** self._pres_exp)
hi_res_pres -= const
if self._fix_bias:
hi_res_pres = self.fix_downscaled_bias(
single_lr_pres, hi_res_pres, method=self._interp_method
)
if np.min(hi_res_pres) < 0.0:
msg = (
'Spatial interpolation of surface pressure '
'resulted in negative values. Incorrectly '
'scaled/unscaled values or incorrect units are '
'the most likely causes.'
)
logger.error(msg)
raise ValueError(msg)
return hi_res_pres
@property
def input_dims(self):
"""Get dimension of model input. This is 4 for linear and surface
models (n_obs, spatial_1, spatial_2, temporal)
Returns
-------
int
"""
return 4
def _get_topo_from_exo(self, exogenous_data):
"""Get lr_topo and hr_topo from exo_data dictionary.
Parameters
----------
exogenous_data : dict
For the SurfaceSpatialMetModel, this must be a nested dictionary
with a main 'topography' key and two entries for
exogenous_data['topography']['steps']. The first entry includes a
2D (lat, lon) or 4D (n_obs, lat, lon, temporal) array of
low-resolution surface elevation data in meters (lat, lon must
match spatial_1, spatial_2 from low_res), and the second entry
includes a 2D (lat, lon) or 4D (n_obs, lat, lon, temporal) array of
high-resolution surface elevation data in meters. e.g.
.. code-block:: JSON
{'topography': {
'steps': [{'data': lr_topo}, {'data': hr_topo'}]
}
}
Returns
-------
lr_topo : ndarray
(lat, lon)
hr_topo : ndarray
(lat, lon)
"""
exo_data = [
step['data'] for step in exogenous_data['topography']['steps']
]
msg = 'exogenous_data is of a bad type {}!'.format(type(exo_data))
assert isinstance(exo_data, (list, tuple)), msg
msg = 'exogenous_data is of a bad length {}!'.format(len(exo_data))
assert len(exo_data) == 2, msg
lr_topo = exo_data[0]
hr_topo = exo_data[1]
if len(lr_topo.shape) == 4:
lr_topo = lr_topo[0, :, :, 0]
if len(hr_topo.shape) == 4:
hr_topo = hr_topo[0, :, :, 0]
return lr_topo, hr_topo
# pylint: disable=unused-argument
[docs]
def generate(
self, low_res, norm_in=False, un_norm_out=False, exogenous_data=None
):
"""Use the generator model to generate high res data from low res
input. This is the public generate function.
Parameters
----------
low_res : np.ndarray
Low-resolution spatial input data, a 4D array of shape:
(n_obs, spatial_1, spatial_2, n_features), Where the feature
channel can include temperature_*m, relativehumidity_*m, and/or
pressure_*m
norm_in : bool
This doesnt do anything for this SurfaceSpatialMetModel, but is
kept to keep the same interface as Sup3rGan
un_norm_out : bool
This doesnt do anything for this SurfaceSpatialMetModel, but is
kept to keep the same interface as Sup3rGan
exogenous_data : dict
For the SurfaceSpatialMetModel, this must be a nested dictionary
with a main 'topography' key and two entries for
exogenous_data['topography']['steps']. The first entry includes a
2D (lat, lon) array of low-resolution surface elevation data in
meters (must match spatial_1, spatial_2 from low_res), and the
second entry includes a 2D (lat, lon) array of high-resolution
surface elevation data in meters. e.g.
.. code-block:: JSON
{'topography': {
'steps': [{'data': lr_topo}, {'data': hr_topo'}]
}
}
Returns
-------
hi_res : ndarray
high-resolution spatial output data, a 4D array of shape:
(n_obs, spatial_1, spatial_2, n_features), Where the feature
channel can include temperature_*m, relativehumidity_*m, and/or
pressure_*m
"""
low_res = np.asarray(low_res)
lr_topo, hr_topo = self._get_topo_from_exo(exogenous_data)
lr_topo = np.asarray(lr_topo)
hr_topo = np.asarray(hr_topo)
logger.debug(
'SurfaceSpatialMetModel received low/high res topo '
'shapes of {} and {}'.format(lr_topo.shape, hr_topo.shape)
)
msg = f'topo_lr needs to be 2d but has shape {lr_topo.shape}'
assert len(lr_topo.shape) == 2, msg
msg = f'topo_hr needs to be 2d but has shape {hr_topo.shape}'
assert len(hr_topo.shape) == 2, msg
msg = (
'lr_topo.shape needs to match lr_res.shape[:2] but received '
f'{lr_topo.shape} and {low_res.shape}'
)
assert lr_topo.shape[0] == low_res.shape[1], msg
assert lr_topo.shape[1] == low_res.shape[2], msg
s_enhance = self._get_s_enhance(lr_topo, hr_topo)
msg = (
'Topo shapes of {} and {} did not match desired spatial '
'enhancement of {}'.format(
lr_topo.shape, hr_topo.shape, self._s_enhance
)
)
assert self._s_enhance == s_enhance, msg
hr_shape = (
len(low_res),
int(low_res.shape[1] * self._s_enhance),
int(low_res.shape[2] * self._s_enhance),
len(self.hr_out_features),
)
logger.debug(
'SurfaceSpatialMetModel with s_enhance of {} '
'downscaling low-res shape {} to high-res shape {}'.format(
self._s_enhance, low_res.shape, hr_shape
)
)
hi_res = np.zeros(hr_shape, dtype=np.float32)
for iobs in range(len(low_res)):
for idf_temp in self.feature_inds_temp:
_tmp = self.downscale_temp(
low_res[iobs, :, :, idf_temp], lr_topo, hr_topo
)
hi_res[iobs, :, :, idf_temp] = _tmp
for idf_pres in self.feature_inds_pres:
_tmp = self.downscale_pres(
low_res[iobs, :, :, idf_pres], lr_topo, hr_topo
)
hi_res[iobs, :, :, idf_pres] = _tmp
for idf_rh in self.feature_inds_rh:
idf_temp = self._get_temp_rh_ind(idf_rh)
_tmp = self.downscale_rh(
low_res[iobs, :, :, idf_rh],
low_res[iobs, :, :, idf_temp],
hi_res[iobs, :, :, idf_temp],
lr_topo,
hr_topo,
)
hi_res[iobs, :, :, idf_rh] = _tmp
for idf_rh in self.feature_inds_rh:
idf_temp = self._get_temp_rh_ind(idf_rh)
_tmp = self.downscale_rh(
low_res[iobs, :, :, idf_rh],
low_res[iobs, :, :, idf_temp],
hi_res[iobs, :, :, idf_temp],
lr_topo,
hr_topo,
)
hi_res[iobs, :, :, idf_rh] = _tmp
for idf_other in self.feature_inds_other:
_arr = self.downscale_arr(
low_res[iobs, :, :, idf_other],
self._s_enhance,
method=self._interp_method,
fix_bias=self._fix_bias,
)
hi_res[iobs, :, :, idf_other] = _arr
if self._noise_adders is not None:
for idf, stdev in enumerate(self._noise_adders):
if stdev is not None:
noise = RANDOM_GENERATOR.uniform(
0, stdev, hi_res.shape[:-1]
)
hi_res[..., idf] += noise
return hi_res
@property
def meta(self):
"""Get meta data dictionary that defines the model params"""
return {
'temp_lapse_rate': self._temp_lapse,
's_enhance': self._s_enhance,
't_enhance': 1,
'noise_adders': self._noise_adders,
'input_resolution': self._input_resolution,
'weight_for_delta_temp': self._w_delta_temp,
'weight_for_delta_topo': self._w_delta_topo,
'pressure_divisor': self._pres_div,
'pressure_exponent': self._pres_exp,
'lr_features': self.lr_features,
'hr_out_features': self.hr_out_features,
'interp_method': self._interp_name,
'fix_bias': self._fix_bias,
'class': self.__class__.__name__,
}
[docs]
def train(self, true_hr_temp, true_hr_rh, true_hr_topo, input_resolution):
"""Trains the relative humidity linear model. The temperature and
surface lapse rate models are parameterizations taken from the NSRDB
and are not trained.
Parameters
----------
true_hr_temp : np.ndarray
True high-resolution daily average temperature data in a 3D array
of shape (lat, lon, n_days)
true_hr_rh : np.ndarray
True high-resolution daily average relative humidity data in a 3D
array of shape (lat, lon, n_days)
true_hr_topo : np.ndarray
High-resolution surface elevation data in meters with shape
(lat, lon)
input_resolution : dict
Dictionary of spatial and temporal input resolution. e.g.
{'spatial': '20km': 'temporal': '60min'}
Returns
-------
w_delta_temp : float
Weight for the delta-temperature feature for the relative humidity
linear regression model.
w_delta_topo : float
Weight for the delta-topography feature for the relative humidity
linear regression model.
regr : sklearn.LinearRegression
Trained regression object that predicts regr(x) = y
x : np.ndarray
2D array of shape (n, 2) where n is the number of observations
being trained on and axis=1 is 1) the True high-res temperature
minus the interpolated temperature and 2) the True high-res topo
minus the interpolate topo.
y : np.ndarray
2D array of shape (n,) that represents the true high-res humidity
minus the interpolated humidity
"""
self._input_resolution = input_resolution
assert len(true_hr_temp.shape) == 3, 'Bad true_hr_temp shape'
assert len(true_hr_rh.shape) == 3, 'Bad true_hr_rh shape'
assert len(true_hr_topo.shape) == 2, 'Bad true_hr_topo shape'
true_hr_topo = np.expand_dims(true_hr_topo, axis=-1)
true_hr_topo = np.repeat(true_hr_topo, true_hr_temp.shape[-1], axis=-1)
true_lr_temp = spatial_coarsening(
true_hr_temp, s_enhance=self._s_enhance, obs_axis=False
)
true_lr_rh = spatial_coarsening(
true_hr_rh, s_enhance=self._s_enhance, obs_axis=False
)
true_lr_topo = spatial_coarsening(
true_hr_topo, s_enhance=self._s_enhance, obs_axis=False
)
interp_hr_temp = np.full(true_hr_temp.shape, np.nan, dtype=np.float32)
interp_hr_rh = np.full(true_hr_rh.shape, np.nan, dtype=np.float32)
interp_hr_topo = np.full(true_hr_topo.shape, np.nan, dtype=np.float32)
for i in range(interp_hr_temp.shape[-1]):
interp_hr_temp[..., i] = self.downscale_arr(
true_lr_temp[..., i], self._s_enhance
)
interp_hr_rh[..., i] = self.downscale_arr(
true_lr_rh[..., i], self._s_enhance
)
interp_hr_topo[..., i] = self.downscale_arr(
true_lr_topo[..., i], self._s_enhance
)
x1 = true_hr_temp - interp_hr_temp
x2 = true_hr_topo - interp_hr_topo
x = np.vstack((x1.flatten(), x2.flatten())).T
y = (true_hr_rh - interp_hr_rh).flatten()
regr = linear_model.LinearRegression(fit_intercept=False)
regr.fit(x, y)
if np.abs(regr.intercept_) > 1e-6:
msg = (
'Relative humidity linear model should have an intercept '
'of zero but the model fit an intercept of {}'.format(
regr.intercept_
)
)
logger.warning(msg)
warn(msg)
w_delta_temp, w_delta_topo = regr.coef_[0], regr.coef_[1]
return w_delta_temp, w_delta_topo, regr, x, y