Source code for sup3r.bias.bias_calc

"""Utilities to calculate the bias correction factors for biased data that is
going to be fed into the sup3r downscaling models. This is typically used to
bias correct GCM data vs. some historical record like the WTK or NSRDB."""

import copy
import json
import logging
import os

import h5py
import numpy as np
from scipy import stats

from .abstract import AbstractBiasCorrection
from .base import DataRetrievalBase
from .mixins import FillAndSmoothMixin

logger = logging.getLogger(__name__)


[docs] class LinearCorrection( AbstractBiasCorrection, FillAndSmoothMixin, DataRetrievalBase ): """Calculate linear correction *scalar +adder factors to bias correct data This calculation operates on single bias sites for the full time series of available data (no season bias correction) """ NT = 1 """size of the time dimension, 1 is no time-based bias correction""" def _init_out(self): """Initialize output arrays""" keys = [ f'{self.bias_feature}_scalar', f'{self.bias_feature}_adder', f'bias_{self.bias_feature}_mean', f'bias_{self.bias_feature}_std', f'base_{self.base_dset}_mean', f'base_{self.base_dset}_std', ] self.out = { k: np.full( (*self.bias_gid_raster.shape, self.NT), np.nan, np.float32 ) for k in keys }
[docs] @staticmethod def get_linear_correction(bias_data, base_data, bias_feature, base_dset): """Get the linear correction factors based on 1D bias and base datasets Parameters ---------- bias_data : np.ndarray 1D array of biased data observations. base_data : np.ndarray 1D array of base data observations. bias_feature : str This is the biased feature from bias_fps to retrieve. This should be a single feature name corresponding to base_dset base_dset : str A single dataset from the base_fps to retrieve. In the case of wind components, this can be u_100m or v_100m which will retrieve windspeed and winddirection and derive the U/V component. Returns ------- out : dict Dictionary of values defining the mean/std of the bias + base data and the scalar + adder factors to correct the biased data like: bias_data * scalar + adder """ bias_std = np.nanstd(bias_data) if bias_std == 0: bias_std = np.nanstd(base_data) scalar = np.nanstd(base_data) / bias_std adder = np.nanmean(base_data) - np.nanmean(bias_data) * scalar out = { f'bias_{bias_feature}_mean': np.nanmean(bias_data), f'bias_{bias_feature}_std': bias_std, f'base_{base_dset}_mean': np.nanmean(base_data), f'base_{base_dset}_std': np.nanstd(base_data), f'{bias_feature}_scalar': scalar, f'{bias_feature}_adder': adder, } return out
# pylint: disable=W0613 @classmethod def _run_single( cls, bias_data, base_fps, bias_feature, base_dset, base_gid, base_handler, daily_reduction, bias_ti, # noqa: ARG003 decimals, base_dh_inst=None, match_zero_rate=False, ): """Find the nominal scalar + adder combination to bias correct data at a single site""" base_data, _ = cls.get_base_data( base_fps, base_dset, base_gid, base_handler, daily_reduction=daily_reduction, decimals=decimals, base_dh_inst=base_dh_inst, ) if match_zero_rate: bias_data = cls._match_zero_rate(bias_data, base_data) out = cls.get_linear_correction( bias_data, base_data, bias_feature, base_dset ) return out
[docs] def write_outputs(self, fp_out, out): """Write outputs to an .h5 file. Parameters ---------- fp_out : str | None Optional .h5 output file to write scalar and adder arrays. out : dict Dictionary of values defining the mean/std of the bias + base data and the scalar + adder factors to correct the biased data like: bias_data * scalar + adder. Each value is of shape (lat, lon, time). """ if fp_out is not None: if not os.path.exists(os.path.dirname(fp_out)): os.makedirs(os.path.dirname(fp_out), exist_ok=True) with h5py.File(fp_out, 'w') as f: # pylint: disable=E1136 lat = self.bias_dh.lat_lon[..., 0] lon = self.bias_dh.lat_lon[..., 1] f.create_dataset('latitude', data=lat) f.create_dataset('longitude', data=lon) for dset, data in out.items(): f.create_dataset(dset, data=data) for k, v in self.meta.items(): f.attrs[k] = json.dumps(v) logger.info( 'Wrote scalar adder factors to file: {}'.format(fp_out) )
def _get_run_kwargs(self, **kwargs_extras): """Get dictionary of kwarg dictionaries to use for calls to ``_run_single``. Each key-value pair is a bias_gid with the associated ``_run_single`` arguments for that gid""" task_kwargs = {} for bias_gid in self.bias_meta.index: _, base_gid = self.get_base_gid(bias_gid) if not base_gid.any(): self.bad_bias_gids.append(bias_gid) else: bias_data = self.get_bias_data(bias_gid) task_kwargs[bias_gid] = { 'bias_data': bias_data, 'base_fps': self.base_fps, 'bias_feature': self.bias_feature, 'base_dset': self.base_dset, 'base_gid': base_gid, 'base_handler': self.base_handler, 'bias_ti': self.bias_ti, 'decimals': self.decimals, 'match_zero_rate': self.match_zero_rate, **kwargs_extras, } return task_kwargs
[docs] def run( self, fp_out=None, max_workers=None, daily_reduction='avg', fill_extend=True, smooth_extend=0, smooth_interior=0, ): """Run linear correction factor calculations for every site in the bias dataset Parameters ---------- fp_out : str | None Optional .h5 output file to write scalar and adder arrays. max_workers : int Number of workers to run in parallel. 1 is serial and None is all available. daily_reduction : None | str Option to do a reduction of the hourly+ source base data to daily data. Can be None (no reduction, keep source time frequency), "avg" (daily average), "max" (daily max), "min" (daily min), "sum" (daily sum/total) fill_extend : bool Flag to fill data past distance_upper_bound using spatial nearest neighbor. If False, the extended domain will be left as NaN. smooth_extend : float Option to smooth the scalar/adder data outside of the spatial domain set by the distance_upper_bound input. This alleviates the weird seams far from the domain of interest. This value is the standard deviation for the gaussian_filter kernel smooth_interior : float Option to smooth the scalar/adder data within the valid spatial domain. This can reduce the affect of extreme values within aggregations over large number of pixels. Returns ------- out : dict Dictionary of values defining the mean/std of the bias + base data and the scalar + adder factors to correct the biased data like: bias_data * scalar + adder. Each value is of shape (lat, lon, time). """ logger.debug('Starting linear correction calculation...') logger.info( 'Initialized scalar / adder with shape: {}'.format( self.bias_gid_raster.shape ) ) self.out = self._run( out=self.out, max_workers=max_workers, daily_reduction=daily_reduction, fill_extend=fill_extend, smooth_extend=smooth_extend, smooth_interior=smooth_interior, ) self.write_outputs(fp_out, self.out) return copy.deepcopy(self.out)
[docs] class ScalarCorrection(LinearCorrection): """Calculate annual linear correction *scalar factors to bias correct data. This typically used when base data is just monthly or annual means and standard deviations cannot be computed. This is case for vortex data, for example. Thus, just scalar factors are computed as mean(base_data) / mean(bias_data). Adder factors are still written but are exactly zero. This calculation operates on single bias sites on a monthly basis """
[docs] @staticmethod def get_linear_correction(bias_data, base_data, bias_feature, base_dset): """Get the linear correction factors based on 1D bias and base datasets Parameters ---------- bias_data : np.ndarray 1D array of biased data observations. base_data : np.ndarray 1D array of base data observations. bias_feature : str This is the biased feature from bias_fps to retrieve. This should be a single feature name corresponding to base_dset base_dset : str A single dataset from the base_fps to retrieve. In the case of wind components, this can be u_100m or v_100m which will retrieve windspeed and winddirection and derive the U/V component. Returns ------- out : dict Dictionary of values defining the mean/std of the bias + base data and the scalar + adder factors to correct the biased data like: bias_data * scalar + adder """ bias_std = np.nanstd(bias_data) if bias_std == 0: bias_std = np.nanstd(base_data) base_mean = np.nanmean(base_data) bias_mean = np.nanmean(bias_data) scalar = base_mean / bias_mean adder = np.zeros(scalar.shape) out = { f'bias_{bias_feature}_mean': bias_mean, f'base_{base_dset}_mean': base_mean, f'{bias_feature}_scalar': scalar, f'{bias_feature}_adder': adder, } return out
[docs] class MonthlyLinearCorrection(LinearCorrection): """Calculate linear correction *scalar +adder factors to bias correct data This calculation operates on single bias sites on a monthly basis """ NT = 12 """size of the time dimension, 12 is monthly bias correction""" @classmethod def _run_single( cls, bias_data, base_fps, bias_feature, base_dset, base_gid, base_handler, daily_reduction, bias_ti, decimals, base_dh_inst=None, match_zero_rate=False, ): """Find the nominal scalar + adder combination to bias correct data at a single site""" base_data, base_ti = cls.get_base_data( base_fps, base_dset, base_gid, base_handler, daily_reduction=daily_reduction, decimals=decimals, base_dh_inst=base_dh_inst, ) if match_zero_rate: bias_data = cls._match_zero_rate(bias_data, base_data) base_arr = np.full(cls.NT, np.nan, dtype=np.float32) out = {} for month in range(1, 13): bias_mask = bias_ti.month == month base_mask = base_ti.month == month if any(bias_mask) and any(base_mask): mout = cls.get_linear_correction( bias_data[bias_mask], base_data[base_mask], bias_feature, base_dset, ) for k, v in mout.items(): if k not in out: out[k] = base_arr.copy() out[k][month - 1] = v return out
[docs] class MonthlyScalarCorrection(MonthlyLinearCorrection, ScalarCorrection): """Calculate linear correction *scalar factors for each month""" NT = 12
[docs] class SkillAssessment(MonthlyLinearCorrection): """Calculate historical skill of one dataset compared to another.""" PERCENTILES = (1, 5, 25, 50, 75, 95, 99) """Data percentiles to report.""" def _init_out(self): """Initialize output arrays""" monthly_keys = [ f'{self.bias_feature}_scalar', f'{self.bias_feature}_adder', f'bias_{self.bias_feature}_mean_monthly', f'bias_{self.bias_feature}_std_monthly', f'base_{self.base_dset}_mean_monthly', f'base_{self.base_dset}_std_monthly', ] annual_keys = [ f'{self.bias_feature}_ks_stat', f'{self.bias_feature}_ks_p', f'{self.bias_feature}_bias', f'bias_{self.bias_feature}_mean', f'bias_{self.bias_feature}_std', f'bias_{self.bias_feature}_skew', f'bias_{self.bias_feature}_kurtosis', f'bias_{self.bias_feature}_zero_rate', f'base_{self.base_dset}_mean', f'base_{self.base_dset}_std', f'base_{self.base_dset}_skew', f'base_{self.base_dset}_kurtosis', f'base_{self.base_dset}_zero_rate', ] self.out = { k: np.full( (*self.bias_gid_raster.shape, self.NT), np.nan, np.float32 ) for k in monthly_keys } arr = np.full((*self.bias_gid_raster.shape, 1), np.nan, np.float32) for k in annual_keys: self.out[k] = arr.copy() for p in self.PERCENTILES: base_k = f'base_{self.base_dset}_percentile_{p}' bias_k = f'bias_{self.bias_feature}_percentile_{p}' self.out[base_k] = arr.copy() self.out[bias_k] = arr.copy() @classmethod def _run_skill_eval( cls, bias_data, base_data, bias_feature, base_dset, match_zero_rate=False, ): """Run skill assessment metrics on 1D datasets at a single site. Note we run the KS test on the mean=0 distributions as per: S. Brands et al. 2013 https://doi.org/10.1007/s00382-013-1742-8 """ if match_zero_rate: bias_data = cls._match_zero_rate(bias_data, base_data) out = {} bias_mean = np.nanmean(bias_data) base_mean = np.nanmean(base_data) out[f'{bias_feature}_bias'] = bias_mean - base_mean out[f'bias_{bias_feature}_mean'] = bias_mean out[f'bias_{bias_feature}_std'] = np.nanstd(bias_data) out[f'bias_{bias_feature}_skew'] = stats.skew(bias_data) out[f'bias_{bias_feature}_kurtosis'] = stats.kurtosis(bias_data) out[f'bias_{bias_feature}_zero_rate'] = np.nanmean(bias_data == 0) out[f'base_{base_dset}_mean'] = base_mean out[f'base_{base_dset}_std'] = np.nanstd(base_data) out[f'base_{base_dset}_skew'] = stats.skew(base_data) out[f'base_{base_dset}_kurtosis'] = stats.kurtosis(base_data) out[f'base_{base_dset}_zero_rate'] = np.nanmean(base_data == 0) if match_zero_rate: ks_out = stats.ks_2samp(base_data, bias_data) else: ks_out = stats.ks_2samp( base_data - base_mean, bias_data - bias_mean ) out[f'{bias_feature}_ks_stat'] = ks_out.statistic out[f'{bias_feature}_ks_p'] = ks_out.pvalue for p in cls.PERCENTILES: base_k = f'base_{base_dset}_percentile_{p}' bias_k = f'bias_{bias_feature}_percentile_{p}' out[base_k] = np.percentile(base_data, p) out[bias_k] = np.percentile(bias_data, p) return out @classmethod def _run_single( cls, bias_data, base_fps, bias_feature, base_dset, base_gid, base_handler, daily_reduction, bias_ti, decimals, base_dh_inst=None, match_zero_rate=False, ): """Do a skill assessment at a single site""" base_data, base_ti = cls.get_base_data( base_fps, base_dset, base_gid, base_handler, daily_reduction=daily_reduction, decimals=decimals, base_dh_inst=base_dh_inst, ) arr = np.full(cls.NT, np.nan, dtype=np.float32) out = { f'bias_{bias_feature}_mean_monthly': arr.copy(), f'bias_{bias_feature}_std_monthly': arr.copy(), f'base_{base_dset}_mean_monthly': arr.copy(), f'base_{base_dset}_std_monthly': arr.copy(), } out.update( cls._run_skill_eval( bias_data, base_data, bias_feature, base_dset, match_zero_rate=match_zero_rate, ) ) for month in range(1, 13): bias_mask = bias_ti.month == month base_mask = base_ti.month == month if any(bias_mask) and any(base_mask): mout = cls.get_linear_correction( bias_data[bias_mask], base_data[base_mask], bias_feature, base_dset, ) for k, v in mout.items(): if not k.endswith(('_scalar', '_adder')): k += '_monthly' out[k][month - 1] = v return out