sup3r.utilities.loss_metrics.MmdMseLoss#

class MmdMseLoss(reduction='auto', name=None)[source]#

Bases: Loss

Loss class for MMD + MSE

Initializes Loss class.

Args:
reduction: Type of tf.keras.losses.Reduction to apply to

loss. Default value is AUTO. AUTO indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to SUM_OVER_BATCH_SIZE. When used under a tf.distribute.Strategy, except via Model.compile() and Model.fit(), using AUTO or SUM_OVER_BATCH_SIZE will raise an error. Please see this custom training [tutorial]( https://www.tensorflow.org/tutorials/distribute/custom_training) for more details.

name: Optional name for the instance.

Methods

call(y_true, y_pred)

Invokes the Loss instance.

from_config(config)

Instantiates a Loss from its config (output of get_config()).

get_config()

Returns the config dictionary for a Loss instance.

Attributes

MMD_LOSS

MSE_LOSS

__call__(x1, x2, sigma=1.0)[source]#

Maximum mean discrepancy (MMD) based on Gaussian kernel function for keras models plus the typical MSE loss.

Parameters:
  • x1 (tf.tensor) – synthetic generator output (n_observations, spatial_1, spatial_2, temporal, features)

  • x2 (tf.tensor) – high resolution data (n_observations, spatial_1, spatial_2, temporal, features)

  • sigma (float) – standard deviation for gaussian kernel

Returns:

tf.tensor – 0D tensor with loss value

abstract call(y_true, y_pred)#

Invokes the Loss instance.

Args:
y_true: Ground truth values. shape = [batch_size, d0, .. dN],

except sparse loss functions such as sparse categorical crossentropy where shape = [batch_size, d0, .. dN-1]

y_pred: The predicted values. shape = [batch_size, d0, .. dN]

Returns:

Loss values with the shape [batch_size, d0, .. dN-1].

classmethod from_config(config)#

Instantiates a Loss from its config (output of get_config()).

Args:

config: Output of get_config().

Returns:

A Loss instance.

get_config()#

Returns the config dictionary for a Loss instance.