jade.models.spark.SparkConfigModel¶
- class jade.models.spark.SparkConfigModel(*, collect_worker_logs: bool = False, conf_dir: str = 'spark-conf', container: SparkContainerModel, enabled: bool = False, master_node_memory_overhead_gb: int = 3, node_memory_overhead_gb: int = 10, run_user_script_inside_container: bool = False, use_tmpfs_for_scratch: bool = False, alt_scratch: str = None, worker_memory_gb: int = 0)[source]¶
Bases:
JadeBaseModelModel definition for a Spark configuration
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
Methods
construct([_fields_set])Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data.
copy(*[, include, exclude, update, deep])Duplicate a model, optionally choose which fields to include, exclude and change.
dict(*[, include, exclude, by_alias, ...])Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
from_orm(obj)get_run_user_script()get_spark_script()get_start_history_server()get_start_master()get_start_worker(memory, cluster)get_stop_history_server()get_stop_master()get_stop_worker()handle_legacy_values(values)json(*[, include, exclude, by_alias, ...])Generate a JSON representation of the model, include and exclude arguments as per dict().
load(path)Load a model from a file.
parse_file(path, *[, content_type, ...])parse_obj(obj)parse_raw(b, *[, content_type, encoding, ...])schema([by_alias, ref_template])schema_json(*[, by_alias, ref_template])update_forward_refs(**localns)Try to update ForwardRefs on fields based on this Model, globalns and localns.
validate(value)Attributes
collect_worker_logsconf_dircontainerenabledmaster_node_memory_overhead_gbnode_memory_overhead_gbrun_user_script_inside_containeruse_tmpfs_for_scratchalt_scratchworker_memory_gb- classmethod construct(_fields_set: SetStr | None = None, **values: Any) Model¶
Creates a new model setting __dict__ and __fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = ‘allow’ was set since it adds all passed values
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: DictStrAny | None = None, deep: bool = False) Model¶
Duplicate a model, optionally choose which fields to include, exclude and change.
- Parameters:
include – fields to include in new model
exclude – fields to exclude from new model, as with values this takes precedence over include
update – values to change/add in the new model. Note: the data is not validated before creating the new model: you should trust this data
deep – set to True to make a deep copy of the model
- Returns:
new model instance
- dict(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) DictStrAny¶
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- json(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, by_alias: bool = False, skip_defaults: bool | None = None, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = None, models_as_dict: bool = True, **dumps_kwargs: Any) str¶
Generate a JSON representation of the model, include and exclude arguments as per dict().
encoder is an optional function to supply as default to json.dumps(), other arguments as per json.dumps().
- classmethod load(path: Path)¶
Load a model from a file.
- classmethod update_forward_refs(**localns: Any) None¶
Try to update ForwardRefs on fields based on this Model, globalns and localns.