Degradation and Acceleration Factors#
This tool will provide a simple method for estimating degradation and for calculating acceleration factors. It interfaces with the degradation database to simplify acquisition of the degradation parameters.
Requirements:
compatible weather file (e.g., PSM3, TMY3, EPW…)
Accelerated testing chamber parameters
chamber irradiance [W/m^2]
chamber temperature [C]
chamber humidity [%]
& etc.
Activation energies for test material [kJ/mol]
Other degradation parameters
Objectives:
Read in the weather data
Gather basic degradation modeling data for a material of interest
Calculate absolute degradation rate
Run Monte Carlo simulation at a single site
Generate chamber or field data for environmental comparison
Calculate degradation acceleration factor of field location to chamber (or another location)
Produce a map of acceleration factors for a geographic region Select a geographic region of interest downsample to select specific site coordinates Download or access the meteorological data for the chosen site coordinates. Run the calculation
# if running on google colab, uncomment the next line and execute this cell to install the dependencies and prevent "ModuleNotFoundError" in later cells:
# !pip install pvdeg
import os
import pvdeg
import pandas as pd
import numpy as np
from pvdeg import DATA_DIR
import json
from IPython.display import display, Math
import pvlib
print(pvlib.__version__)
from pvlib import iotools
0.13.0
# This information helps with debugging and getting support :)
import sys, platform
print("Working on a ", platform.system(), platform.release())
print("Python version ", sys.version)
print("Pandas version ", pd.__version__)
print("pvdeg version ", pvdeg.__version__)
print(DATA_DIR)
Working on a Windows 11
Python version 3.13.5 | packaged by Anaconda, Inc. | (main, Jun 12 2025, 16:37:03) [MSC v.1929 64 bit (AMD64)]
Pandas version 2.3.1
pvdeg version 0.5.1.dev206+g9401807.d20250808
C:\Users\mkempe\Documents\GitHub\new\PVDegradationTools\pvdeg\data
1. Read In the Weather Data#
The function has these minimum requirements when using a weather data file:
Weather data containing (at least) DNI, DHI, GHI, Temperature, RH, and Wind-Speed data at module level.
Site meta-data containing (at least) latitude, longitude, and time zone
Alternatively one may can get meterological data from the NSRDB or PVGIS with just the longitude and latitude. This function for the NSRDB (via NSRDB ‘PSM3’) works primarily for most of North America and South America. PVGIS works for most of the rest of the world (via SARAH ‘PVGIS’). See the tutorial “Weather Database Access.ipynb” tutorial on PVdeg or Jensen et al. https://doi.org/10.1016/j.solener.2023.112092 for satellite coverage information.
# Get data from a supplied data file (Do not use the next box of code if using your own file)
weather_file = os.path.join(DATA_DIR, "psm3_demo.csv")
weather_df, meta = pvdeg.weather.read(weather_file, "csv", find_meta=True)
print(weather_file)
print(meta)
C:\Users\mkempe\Documents\GitHub\new\PVDegradationTools\pvdeg\data\psm3_demo.csv
{'Source': 'NSRDB', 'Location ID': 145809.0, 'City': 'West Pleasant View', 'State': 'Colorado', 'Country': 'United States of America', 'Clearsky DHI Units': 'w/m2', 'Clearsky DNI Units': 'w/m2', 'Clearsky GHI Units': 'w/m2', 'Dew Point Units': 'c', 'DHI Units': 'w/m2', 'DNI Units': 'w/m2', 'GHI Units': 'w/m2', 'Solar Zenith Angle Units': 'Degree', 'Temperature Units': 'c', 'Pressure Units': 'mbar', 'Relative Humidity Units': '%', 'Precipitable Water Units': 'cm', 'Wind Direction Units': 'Degrees', 'Wind Speed Units': 'm/s', 'Cloud Type -15': 'N/A', 'Cloud Type 0': 'Clear', 'Cloud Type 1': 'Probably Clear', 'Cloud Type 2': 'Fog', 'Cloud Type 3': 'Water', 'Cloud Type 4': 'Super-Cooled Water', 'Cloud Type 5': 'Mixed', 'Cloud Type 6': 'Opaque Ice', 'Cloud Type 7': 'Cirrus', 'Cloud Type 8': 'Overlapping', 'Cloud Type 9': 'Overshooting', 'Cloud Type 10': 'Unknown', 'Cloud Type 11': 'Dust', 'Cloud Type 12': 'Smoke', 'Fill Flag 0': 'N/A', 'Fill Flag 1': 'Missing Image', 'Fill Flag 2': 'Low Irradiance', 'Fill Flag 3': 'Exceeds Clearsky', 'Fill Flag 4': 'Missing CLoud Properties', 'Fill Flag 5': 'Rayleigh Violation', 'Surface Albedo Units': 'N/A', 'Version': '3.0.6', 'latitude': 39.73, 'longitude': -105.18, 'tz': -7.0, 'altitude': 1820.0, 'ISO3166-2-lvl4': 'US-CO', 'Street': 'West 8th Avenue', 'County': 'Jefferson County', 'Zipcode': '80419', 'Country Code': 'US'}
# This routine will get a meteorological dataset from anywhere in the world where it is available
# weather_id = (24.7136, 46.6753) #Riyadh, Saudi Arabia
# weather_id = (35.6754, 139.65) #Tokyo, Japan
# weather_id = (-43.52646, 172.62165) #Christchurch, New Zealand
# weather_id = (64.84031, -147.73836) #Fairbanks, Alaska
# weather_id = (65.14037, -21.91633) #Reykjavik, Iceland
weather_id = (33.4152, -111.8315) # Mesa, Arizona
# weather_id = (0,0) # Somewhere else you are interested in.
weather_df, meta = pvdeg.weather.get_anywhere(id=weather_id)
print(meta)
# display(weather_df)
{'latitude': 33.4152, 'longitude': -111.8315, 'irradiance_time_offset': 0.0, 'altitude': 381.0, 'wind_height': 10, 'Source': 'PVGIS'}
POA Irradiance#
Next we need to calculate the stress parameters including temperature and humidity. We start with POA irradiance. Irradiance_kwarg governs the array orientation for doing the POA calculations. It is defaulted to a north-south single axis tracking. A fixed tilt set of parameters is included but is blocked out. Look in spectral.py and/or PVLib here for 1-axis kwargs, https://pvlib-python.readthedocs.io/en/v0.7.2/generated/pvlib.tracking.singleaxis.html#pvlib.tracking.singleaxis and for fixed tilt, https://pvlib-python.readthedocs.io/en/v0.7.2/generated/pvlib.irradiance.gti_dirint.html?highlight=poa . Here, the POA global calculation is appended to the meteorolgical data dataframe.
# irradiance_kwarg ={
# "tilt": None,
# "azimuth": None,
# "module_mount": 'fixed'}
irradiance_kwarg = {"axis_tilt": 0, "axis_azimuth": 180, "module_mount": "single_axis"}
poa_df = pvdeg.spectral.poa_irradiance(
weather_df=weather_df, meta=meta, **irradiance_kwarg
)
weather_df["poa_global"] = poa_df["poa_global"]
Get Spectrally Resolved Irradiance Data#
This first set of commands will calculate spectrally resolved irradiance data. This may or may not be needed for a given degradation model and can be skipped here.
# this whole block needs to be replaced with call to calculate spectrally resolved irradiance.
from pvdeg import TEST_DATA_DIR
INPUT_SPECTRA = os.path.join(TEST_DATA_DIR, r"spectra_pytest.csv")
data = pd.read_csv(INPUT_SPECTRA)
# display(data)
print(INPUT_SPECTRA)
# Test function
# cusotm_albedo['Summer']
# custom_albedo['Winter']
# custom_albedo['Snow']
# defaults - Grass, Dry Grass, Snow
# Flexible to add complexity later
# merge in development branch changes
# KGPCY Python package
custom_albedo_summer = "A006"
custom_albedo_winter = { # required: startDate, wavelength (if len(albedo) > 1), albedo, isSnow defaults to False
"data_entry_person": "Michael Kempe",
"date_entered": "7/28/2025",
"DOI": "10.3390/ijerph15071507",
"source_title": "Ultraviolet Radiation Albedo and Reflectance in Review: The Influence to Ultraviolet Exposure in Occupational Settings",
"authors": "Joanna Turner, Alfio V. Parisi",
"reference": "Turner J, Parisi AV. Ultraviolet Radiation Albedo and Reflectance in Review: The Influence to Ultraviolet Exposure in Occupational Settings. Int J Environ Res Public Health. 2018 Jul 17;15(7):1507.",
"keywords": "snow, ground",
"months": "1,2,3,10,11,12",
"startDate": "January 1", # Day of Year? 0-365
"HourOfYear": "1", # Hour of Year? 1-8760
"isSnow": "False",
"comments": "Data is emperically extrapolated from 280 nm to 297 nm. Data extracted from Turner et al. Figure 1 as a reference to Doda & Green Snow-Ground. Doda D., Green A. Surface Reflectance Measurements in the UV from an Airborne Platform. Part 1. Appl. Opt. 1980;19:2140-2145. doi: 10.1364/AO.19.002140. Doda D., Green A. Surface Reflectance Measurements in the Ultraviolet from an Airborne Platform. Part 2. Appl. Opt. 1981;20:636-642. doi: 10.1364/AO.20.000636.",
"wavelength": "280, 297.32034, 300.02435, 301.8514, 305.79782, 310.10962, 313.21558, 317.4543, 322.86237, 329.9513, 331.19366, 339.89038, 343.06943, 350.34103, 360.02435, 369.96347, 380.3776, 386.77222, 390.0609, 400.14615",
"albedo": "20, 29.515152, 28.30303, 29.454546, 28.90909, 34.696968, 36.757576, 39.363636, 39.21212, 38.60606, 41.272728, 40.909092, 42.242424, 42.21212, 40.575756, 43.21212, 43.090908, 43.454544, 43.60606, 39.757576",
}
# Startdate, albedo, wavelength -> then next one + boolean logic for snow ()
custom_albedo_snow = {}
# custom_albedo_snow
spectra_folder = "spectra" # If you have already pulled the spectra from SMARTS, pass the folder path to avoid going through the donwload process again.
wavelengths = np.arange(
280, 400, 25
) # Example wavelengths from 280 nm to 400 nm in steps of 25 nm
# data = pvdeg.spectral.spectrally_resolved_irradiance(weather_df=weather_df, meta=meta, wavelengths=wavelengths, frontResultsOnly=None,
# spectra_folder=spectra_folder, custom_albedo_summer=custom_albedo_summer, custom_albedo_winter=custom_albedo_winter, **irradiance_kwarg)
# return front, back, or both (True, False, None)
# bool frontResultsonly = True for front only
# separate columns for front and back irradiance: spectra_front: etc. , spectra_back: etc. (see spectra_pytest.csv)
# Check albedo boolean snow, winter non-snow, summer non-snow
C:\Users\mkempe\Documents\GitHub\new\PVDegradationTools\tests\data\spectra_pytest.csv
Get Cell Temperature and Module Surface Temperature#
The following will calculate the cell and module surface temperature using the King model as a default. Other models can be used as described at, https://pvlib-python.readthedocs.io/en/stable/reference/pv_modeling/temperature.html. The difference is less than one °C for ground mounted systems but can be as high as 3 °C for a high temperature building integrated system.
Here the temperatures are added to the dataframe and the ‘temp_module’ temperature is selected as the default ‘temperature’ for the degradation calculations. If it is a cell degradation that is being investigated, ‘temp_cell’ should be used for the temperature.
temp_cell = pvdeg.temperature.cell(weather_df=weather_df, meta=meta, poa=poa_df)
temp_module = pvdeg.temperature.module(weather_df=weather_df, meta=meta, poa=poa_df)
weather_df["temp_cell"] = temp_cell
weather_df["temp_module"] = temp_module
weather_df["temperature"] = weather_df["temp_module"]
# weather_df['temperature'] = weather_df['temp_cell']
Humidity#
Depending on the component for which the calculation is being run on, the desired humidity may be the atmospheric humidity, the module surface humidity, the humidity in front of a cell with a permeable backsheet, the humidity in the backsheet, the humidity in the back encapsulant or another custom humidity location such as a diffusion limited location. The folowing are options for doing all of these calculations. Here all the different humidities are put in the weather_df dataframe, but to select one to be specifically used it should be named ‘RH’ for most degradation functions (check the documentation of a specific degradation calculation if in doubt). Here the surface humidity is selected as a default.
Append the calculated values into the weather DataFrame. Note: putting the values into the weather_df DataFrame is not strictly necessary, but may be convenient for later use in the degradation calculations.
RH_module = pvdeg.humidity.module(
weather_df=weather_df,
poa=poa_df,
temp_module=temp_module,
backsheet="W017",
backsheet_thickness=0.30,
encapsulant="W001",
back_encap_thickness=0.50,
)
weather_df = pd.concat([weather_df, RH_module], axis=1)
Each of the necessary arrays of data can be individually sent to a function for calculation in the function call, or they can be combined into a single dataframe. The degradation functions are set up to first check for a specific data set in the function call but if not found it looks for specific data or a suitable substitute in the weather dataframe.
You can select one of the RH values to be used as the relative humidity in the degradation model calculations by assigning it to to column “RH” in the dataframe. Alternatively, the “RH” data can be sent to the degradation function explicitly in the function call.
weather_df["RH"] = RH_module["RH_surface_outside"]
# weather_df['RH'] = RH_module['RH_front_encap']
# weather_df['RH'] = RH_module['Ce_back_encap']
# weather_df['RH'] = RH_module['RH_back_encap']
# weather_df['RH'] = RH_module['RH_backsheet']
2. Gather Basic Degradation Modeling Data for a Material of Interest#
First we need to gather in the parameters for the degradation process of interest. This includes things such as the activiation energy and parameters defining the sensitivity to moisture, UV light, voltage, and other stressors. For this tutorial we will need solar position, POA, PV cell and module temperature. Let’s gernate those individually with their respective functions. The blocked out text will produce a list of key fields from the database for each entry.
# kwarg_variables = pvdeg.utilities._read_material(name=None, fname="DegradationDatabase", item=("Material", "Equation", "KeyWords", "EquationType"))
# print(json.dumps(kwarg_variables, skipkeys = True, indent = 0 ).replace("{" + "\n", "{").replace('\"' + "\n", "\"").replace(': {' , ':' + "\n" + "{").replace('},' + "\n", '},' +'\n' +'\n'))
pvdeg.utilities.display_json(pvdeg_file="DegradationDatabase", fp=DATA_DIR)
JSON Output at fp: C:\Users\mkempe\Documents\GitHub\new\PVDegradationTools\pvdeg\data\DegradationDatabase.json
<h2 style="color: white;">JSON Output at fp: C:\Users\mkempe\Documents\GitHub\new\PVDegradationTools\pvdeg\data\DegradationDatabase.json</h2><div><div><strong style="color: white;">D001:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Michael Kempe",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) }",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "units": "kJ/mol"<br> }<br> }</pre></div></div><div><strong style="color: white;">D002:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"SourceTitle":</span> "Error Analyses and Associated Risk for Accelerated Weathering Results/2009 Presentation",<br> <span style="color: plum;">"Authors":</span> "Richard M. Fischer, Warren D. Ketola",<br> <span style="color: plum;">"Reference":</span> "R. M. Fischer and W. D. Ketola, 'Error Analyses and Associated Risk for Accelerated Weathering Results,' Third International Service Life Symposium, Sedona, AZ February 2004, 2004.",<br> <span style="color: plum;">"KeyWords":</span> "Gloss, color shift, cracking, gloss loss, fluorescence loss, retroreflectance loss, adhesive transfer (clean removal), shrinkage, yellowing",<br> <span style="color: plum;">"Material":</span> "Paints and Coatings",<br> <span style="color: plum;">"EquationType":</span> "Vant_Hoff_TOW_Schwarzchild",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot G^P \\left( \\frac{1}{b+m\\cdot TOW} \\right) \\cdot T_f^{ \\frac{T}{10}}",<br> <span style="color: plum;">"R_0":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"x":</span> {<br> "value": 0.64,<br> "stdev": 0.2<br> },<br> <span style="color: plum;">"b":</span> {<br> "value": 1.07,<br> "stdev": 0.11<br> },<br> <span style="color: plum;">"m":</span> {<br> "value": -2.8e-05,<br> "stdev": 4.88e-05<br> },<br> <span style="color: plum;">"T_f":</span> {<br> "value": 1.41,<br> "stdev": 0.23<br> }<br> }</pre></div></div><div><strong style="color: white;">D003:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DOI":</span> "10.1002/.pip1172",<br> <span style="color: plum;">"SourceTitle":</span> "Life Prediction for CIGS Solar Modules",<br> <span style="color: plum;">"Authors":</span> "D.J. Coyle, H.A. Blaydes, R.S. Northey, J.E. Pickett, K.R. Nagarkar, R.A. Zhao, and J.O. Gardner",<br> <span style="color: plum;">"Reference":</span> "Coyle, D. J., et al. (2011). 'Life prediction for CIGS solar modules part 2: degradation kinetics, accelerated testing, and encapsulant effects.' Progress in Photovoltaics: Research and Applications.",<br> <span style="color: plum;">"KeyWords":</span> "Temperature, humidity, CIGS, Moisture ingress, thin film",<br> <span style="color: plum;">"Material":</span> "CIGS",<br> <span style="color: plum;">"Degradation":</span> "CIGS_Efficiency, ITO_ECA0",<br> <span style="color: plum;">"EquationType":</span> "Arrhenius_BET4",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) } \\cdot \\left( \\frac{RH}{1-RH+E} \\right)",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "value": 845000000,<br> "units": "%/h"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 33.472,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E":</span> {<br> "value": 0.04<br> }<br> }</pre></div></div><div><strong style="color: white;">D004:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DOI":</span> "10.1002/.pip1173",<br> <span style="color: plum;">"SourceTitle":</span> "Life Prediction for CIGS Solar Modules",<br> <span style="color: plum;">"Authors":</span> "D.J. Coyle, H.A. Blaydes, R.S. Northey, J.E. Pickett, K.R. Nagarkar, R.A. Zhao, and J.O. Gardner",<br> <span style="color: plum;">"Reference":</span> "Coyle, D. J., et al. (2011). 'Life prediction for CIGS solar modules part 2: degradation kinetics, accelerated testing, and encapsulant effects.' Progress in Photovoltaics: Research and Applications.",<br> <span style="color: plum;">"KeyWords":</span> "Temperature, humidity, CIGS, Moisture ingress, thin film",<br> <span style="color: plum;">"Material":</span> "CIGS",<br> <span style="color: plum;">"Degradation":</span> "CIGS_Efficiency, ITO_ECA1",<br> <span style="color: plum;">"EquationType":</span> "Arrhenius_BET5",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) } \\cdot \\left( \\frac{RH}{1-RH+E} \\right)",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "value": 73000000000000,<br> "units": "%/h"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 67.3624,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E":</span> {<br> "value": 0.04<br> }<br> }</pre></div></div><div><strong style="color: white;">D005:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DOI":</span> "10.1002/.pip1174",<br> <span style="color: plum;">"SourceTitle":</span> "Life Prediction for CIGS Solar Modules",<br> <span style="color: plum;">"Authors":</span> "D.J. Coyle, H.A. Blaydes, R.S. Northey, J.E. Pickett, K.R. Nagarkar, R.A. Zhao, and J.O. Gardner",<br> <span style="color: plum;">"Reference":</span> "Coyle, D. J., et al. (2011). 'Life prediction for CIGS solar modules part 2: degradation kinetics, accelerated testing, and encapsulant effects.' Progress in Photovoltaics: Research and Applications.",<br> <span style="color: plum;">"KeyWords":</span> "Temperature, humidity, CIGS, Moisture ingress, thin film",<br> <span style="color: plum;">"Material":</span> "CIGS",<br> <span style="color: plum;">"Degradation":</span> "CIGS_Efficiency, AZO",<br> <span style="color: plum;">"EquationType":</span> "Arrhenius_BET6",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) } \\cdot \\left( \\frac{RH}{1-RH+E} \\right)",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "value": 1.1e+17,<br> "units": "%/h"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 78.6592,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E":</span> {<br> "value": 0.04<br> }<br> }</pre></div></div><div><strong style="color: white;">D006:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DOI":</span> "10.1109/PVSC45281.2020.9300357",<br> <span style="color: plum;">"SourceTitle":</span> "Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets",<br> <span style="color: plum;">"Authors":</span> "Michael D Kempe, Peter Hacke, Joshua Morse, Michael Owen-Bellini, Derek Holsapple, Trevor Lockman, Samantha Hoang, David Okawa, Tamir Lance, Hoi Hong Ng",<br> <span style="color: plum;">"Reference":</span> "Kempe, M. D., et al. (2020). Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC).",<br> <span style="color: plum;">"KeyWords":</span> "humidity, irradiance, frontsheet, UV cut-on",<br> <span style="color: plum;">"Material":</span> "Flexible Frontsheet, Frontsheet Coatings",<br> <span style="color: plum;">"Degradation":</span> "UV Cut On",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot RH^n\\cdot G_{340}^P\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) }",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 35.3,<br> "stdev": 8.9,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"p":</span> {<br> "value": 0.37,<br> "stdev": 0.26<br> }<br> }</pre></div></div><div><strong style="color: white;">D007:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DOI":</span> "10.1109/PVSC45281.2020.9300357",<br> <span style="color: plum;">"SourceTitle":</span> "Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets",<br> <span style="color: plum;">"Authors":</span> "Michael D Kempe, Peter Hacke, Joshua Morse, Michael Owen-Bellini, Derek Holsapple, Trevor Lockman, Samantha Hoang, David Okawa, Tamir Lance, Hoi Hong Ng",<br> <span style="color: plum;">"Reference":</span> "Kempe, M. D., et al. (2020). Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC).",<br> <span style="color: plum;">"KeyWords":</span> "humidity, irradiance, frontsheet, ultraviolet, transmittance",<br> <span style="color: plum;">"Material":</span> "Flexible Frontsheet, Frontsheet Coatings",<br> <span style="color: plum;">"Degradation":</span> "UV Transmittance 310nm-350nm",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot RH^n\\cdot G_{340}^P\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) }",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 53.2,<br> "stdev": 16.6,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"p":</span> {<br> "value": 0.45,<br> "stdev": 0.24<br> }<br> }</pre></div></div><div><strong style="color: white;">D008:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DOI":</span> "10.1109/PVSC45281.2020.9300357",<br> <span style="color: plum;">"SourceTitle":</span> "Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets",<br> <span style="color: plum;">"Authors":</span> "Michael D Kempe, Peter Hacke, Joshua Morse, Michael Owen-Bellini, Derek Holsapple, Trevor Lockman, Samantha Hoang, David Okawa, Tamir Lance, Hoi Hong Ng",<br> <span style="color: plum;">"Reference":</span> "Kempe, M. D., et al. (2020). Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC).",<br> <span style="color: plum;">"KeyWords":</span> "humidity, irradiance, yellowness, yellowness index",<br> <span style="color: plum;">"Material":</span> "Flexible Frontsheet, Frontsheet Coatings",<br> <span style="color: plum;">"Degradation":</span> "yellowness_index",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot RH^n\\cdot G_{340}^P\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) }",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 40.4,<br> "stdev": 22.5,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"p":</span> {<br> "value": 0.5,<br> "stdev": 0.25<br> }<br> }</pre></div></div><div><strong style="color: white;">D009:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DOI":</span> "10.1109/PVSC45281.2020.9300357",<br> <span style="color: plum;">"SourceTitle":</span> "Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets",<br> <span style="color: plum;">"Authors":</span> "Michael D Kempe, Peter Hacke, Joshua Morse, Michael Owen-Bellini, Derek Holsapple, Trevor Lockman, Samantha Hoang, David Okawa, Tamir Lance, Hoi Hong Ng",<br> <span style="color: plum;">"Reference":</span> "Kempe, M. D., et al. (2020). Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC).",<br> <span style="color: plum;">"KeyWords":</span> "humidity, irradiance, frontsheet, transmittance",<br> <span style="color: plum;">"Material":</span> "Flexible Frontsheet, Frontsheet Coatings",<br> <span style="color: plum;">"Degradation":</span> "SPQEWT",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot RH^n\\cdot G_{340}^P\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) }",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 30.7,<br> "stdev": 23.5,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"p":</span> {<br> "value": 0.53,<br> "stdev": 0.22<br> }<br> }</pre></div></div><div><strong style="color: white;">D010:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Jada Swailes",<br> <span style="color: plum;">"DateEntered":</span> "3/21/2023",<br> <span style="color: plum;">"DOI":</span> "10.1016/j.polymdegradstab.2013.04.001",<br> <span style="color: plum;">"SourceTitle":</span> "Pickett Coyle Hydrolysis Kinetics of condensation polymers under humidity aging conditions.pdf",<br> <span style="color: plum;">"Authors":</span> "James E. Pickett, Dennis J. Coyle",<br> <span style="color: plum;">"KeyWords":</span> "PC, humidity, hydrothermal, polycarbonate, polyarylate, aryl ester, aromatic polyester, hydrolysis",<br> <span style="color: plum;">"Material":</span> "Bisphenol-A polycarbonate (PC)",<br> <span style="color: plum;">"Degradation":</span> "Hydrolysis",<br> <span style="color: plum;">"Comments":</span> "RH is a fraction between 0 and 1. Data from Table 5. The paper provided variability for a 95% confidence interval which was divided by 2 to get the standard deviation.",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "t_{fail}=R_0\\cdot \\frac {e^{ \\left( \\frac{E_a}{R\\cdot T_K } \\right) }}{RH^2}",<br> <span style="color: plum;">"t_fail":</span> {<br> "units": "days"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "value": 65200000000.0,<br> "units": "days"<br> },<br> <span style="color: plum;">"ln(R_0)":</span> {<br> "value": 24.9,<br> "stdev": 1.6,<br> "units": "ln(days)"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 92,<br> "stdev": 4.8,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"n":</span> {<br> "value": 2,<br> "stdev": 0,<br> "units": "NA"<br> }<br> }</pre></div></div><div><strong style="color: white;">D011:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Jada Swailes",<br> <span style="color: plum;">"DateEntered":</span> "3/21/2023",<br> <span style="color: plum;">"DOI":</span> "10.1016/j.polymdegradstab.2013.04.001",<br> <span style="color: plum;">"SourceTitle":</span> "Pickett Coyle Hydrolysis Kinetics of condensation polymers under humidity aging conditions.pdf",<br> <span style="color: plum;">"Authors":</span> "James E. Pickett, Dennis J. Coyle",<br> <span style="color: plum;">"KeyWords":</span> "PET, humidity, hydrothermal, polyester, PET, polyarylate, aryl ester, aromatic polyester, hydrolysis, poly(ethylene terephthalate)",<br> <span style="color: plum;">"Material":</span> "poly(ethylene terephthalate), Average of three materials, PET-A,B,C",<br> <span style="color: plum;">"Degradation":</span> "Hydrolysis",<br> <span style="color: plum;">"Comments":</span> "RH is a fraction between 0 and 1. Data from Table 5. The paper provided variability for a 95% confidence interval which was divided by 2 to get the standard deviation.",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "t_{fail}=R_0\\cdot \\frac {e^{ \\left( \\frac{E_a}{R\\cdot T_K } \\right) }}{RH^2}",<br> <span style="color: plum;">"t_fail":</span> {<br> "units": "days"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "value": 1.689e+17,<br> "units": "days"<br> },<br> <span style="color: plum;">"ln(R_0)":</span> {<br> "value": 39.3,<br> "stdev": 1.1,<br> "units": "ln(days)"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 129,<br> "stdev": 3.35,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"n":</span> {<br> "value": 2,<br> "stdev": 0,<br> "units": "NA"<br> }<br> }</pre></div></div><div><strong style="color: white;">D012:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Jada Swailes",<br> <span style="color: plum;">"DateEntered":</span> "3/21/2023",<br> <span style="color: plum;">"DOI":</span> "10.1016/j.polymdegradstab.2013.04.001",<br> <span style="color: plum;">"SourceTitle":</span> "Pickett Coyle Hydrolysis Kinetics of condensation polymers under humidity aging conditions.pdf",<br> <span style="color: plum;">"Authors":</span> "James E. Pickett, Dennis J. Coyle",<br> <span style="color: plum;">"KeyWords":</span> "PET, humidity, hydrothermal, polyester, pET, aryl ester, aromatic polyester, hydrolysis, poly(ethylene terephthalate)",<br> <span style="color: plum;">"Material":</span> "poly(ethylene terephthalate), PET-D",<br> <span style="color: plum;">"Degradation":</span> "Hydrolysis",<br> <span style="color: plum;">"Comments":</span> "RH is a fraction between 0 and 1. Data from Table 5. The paper provided variability for a 95% confidence interval which was divided by 2 to get the standard deviation. This is the time to failure for the PET-D material.",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "t_{fail}=R_0\\cdot \\frac {e^{ \\left( \\frac{E_a}{R\\cdot T_K } \\right) }}{RH^2}",<br> <span style="color: plum;">"t_fail":</span> {<br> "units": "days"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "value": 7.835e+16,<br> "units": "days"<br> },<br> <span style="color: plum;">"ln(R_0)":</span> {<br> "value": 38.9,<br> "stdev": 1,<br> "units": "ln(days)"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 128,<br> "stdev": 2.95,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"n":</span> {<br> "value": 2,<br> "stdev": 0,<br> "units": "NA"<br> }<br> }</pre></div></div><div><strong style="color: white;">D013:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Jada Swailes",<br> <span style="color: plum;">"DateEntered":</span> "3/21/2023",<br> <span style="color: plum;">"DOI":</span> "10.1016/j.polymdegradstab.2013.04.001",<br> <span style="color: plum;">"SourceTitle":</span> "Pickett Coyle Hydrolysis Kinetics of condensation polymers under humidity aging conditions.pdf",<br> <span style="color: plum;">"Authors":</span> "James E. Pickett, Dennis J. Coyle",<br> <span style="color: plum;">"KeyWords":</span> "RPA, resorcinol polyarylate, humidity, hydrothermal, polyester, polyarylate, aryl ester, aromatic polyester, hydrolysis",<br> <span style="color: plum;">"Material":</span> "resorcinol polyarylate (RPA-A)",<br> <span style="color: plum;">"Degradation":</span> "Hydrolysis",<br> <span style="color: plum;">"Comments":</span> "RH is a fraction between 0 and 1. Data from Table 5. The paper provided variability for a 95% confidence interval which was divided by 2 to get the standard deviation.",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "t_{fail}=R_0\\cdot \\frac {e^{ \\left( \\frac{E_a}{R\\cdot T_K } \\right) }}{RH^2}",<br> <span style="color: plum;">"t_fail":</span> {<br> "units": "days"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "value": 64649000000000.0,<br> "units": "days"<br> },<br> <span style="color: plum;">"ln(R_0)":</span> {<br> "value": 31.8,<br> "stdev": 1.85,<br> "units": "ln(days)"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 105,<br> "stdev": 5.45,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"n":</span> {<br> "value": 2,<br> "stdev": 0,<br> "units": "NA"<br> }<br> }</pre></div></div><div><strong style="color: white;">D014:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Jada Swailes",<br> <span style="color: plum;">"DateEntered":</span> "3/21/2023",<br> <span style="color: plum;">"DOI":</span> "10.1016/j.polymdegradstab.2013.04.001",<br> <span style="color: plum;">"SourceTitle":</span> "Pickett Coyle Hydrolysis Kinetics of condensation polymers under humidity aging conditions.pdf",<br> <span style="color: plum;">"Authors":</span> "James E. Pickett, Dennis J. Coyle",<br> <span style="color: plum;">"KeyWords":</span> "Humidity, hydrothermal, polyester, polyarylate, aryl ester, aromatic polyester, resorcinol polyarylate, hydrolysis",<br> <span style="color: plum;">"Material":</span> "RPA-B,C",<br> <span style="color: plum;">"Degradation":</span> "Hydrolysis",<br> <span style="color: plum;">"Comments":</span> "RH is a fraction between 0 and 1. Data from Table 5. The paper provided variability for a 95% confidence interval which was divided by 2 to get the standard deviation.",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "t_{fail}=R_0\\cdot \\frac {e^{ \\left( \\frac{E_a}{R\\cdot T_K } \\right) }}{RH^2}",<br> <span style="color: plum;">"t_fail":</span> {<br> "units": "days"<br> },<br> <span style="color: plum;">"ln(R_0)":</span> {<br> "value": 30,<br> "stdev": 2,<br> "units": "ln(days)"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "value": 1.98626e+49,<br> "units": "days"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 102,<br> "stdev": 6.05,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"n":</span> {<br> "value": 2,<br> "stdev": 0,<br> "units": "NA"<br> }<br> }</pre></div></div><div><strong style="color: white;">D015:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "3/27/2023",<br> <span style="color: plum;">"DOI":</span> "10.1021/jacs.2c00391",<br> <span style="color: plum;">"SourceTitle":</span> "Water-Accelerated Photo-oxidation of CH3NH3PbI3 Perovskite: Mechanism, rate orders, and rate constants",<br> <span style="color: plum;">"Authors":</span> "Timothy D. Siegler, Wiley A. Dunlap-Shohl, Yuhuan Meng, Wylie F. Kau, Preetham P. Sunkari, Chang En Tsai, Zachary J. Armstrong, Yu-chia Chen, David A. C. Beck, Marina Meila, Hugh W. Hillhouse",<br> <span style="color: plum;">"Reference":</span> "Journal of the American Chemical Society 2022 144 (12), 5552-5561",<br> <span style="color: plum;">"KeyWords":</span> "Dry Photooxidation, Water Photooxidiation",<br> <span style="color: plum;">"Material":</span> "Halide Perovskite (MAPbI3)",<br> <span style="color: plum;">"Degradation":</span> "Optical Transmittance In-Situ measurement",<br> <span style="color: plum;">"Comments":</span> "LED Light at 550nm",<br> <span style="color: plum;">"EquationType":</span> "Perovskite_1",<br> <span style="color: plum;">"Equation":</span> "R_D=R_{0,WPO}\\cdot e^{ \\left( \\frac{-E_{a,WPO}}{R\\cdot T_K } \\right) } \\cdot \\left< \\frac{P_{O_2}\\cdot P_{H_2 O}\\cdot G_{550}^{0.7} }{ \\left[ 1+K_{2W}\\cdot P_{O_2} \\left(1+K_{3W}\\cdot G_{550}^{0.7} \\right) \\right]^2} \\right> +R_{0,DPO}\\cdot e^ {\\left( \\frac{-E_{a,DPO}}{R\\cdot T_K} \\right) } \\cdot \\frac{P_{O_2} \\cdot G_{550}^{0.7} }{1+K_{2D}\\cdot P_{O_2} \\cdot \\left( 1+K_3D\\cdot G_{550}^{0.7} \\right)} +R_{0,hum}\\cdot e^ { \\left( \\frac {-E_a^{hum}}{R\\cdot T_K } \\right) } \\cdot P_{H_2 O}\\cdot G_{550}^{0.7}+R_{0,therm}\\cdot e^{ \\left( \\frac{-E_a^{therm}}{R\\cdot T_K } \\right) }",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "mol/(m^2\u00b7s)"<br> },<br> <span style="color: plum;">"R_0,WPO":</span> {<br> "value": 3.16e-25,<br> "units": "mol/(m^2\u00b7s\u00b7kpa^2 )\u00b7(photons/(m^2\u00b7s))^(-0.7)"<br> },<br> <span style="color: plum;">"E_a,WPO":</span> {<br> "value": -8.6827,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"K_2W":</span> {<br> "value": 0.0044,<br> "units": "1/kPa"<br> },<br> <span style="color: plum;">"K_3W":</span> {<br> "value": 4.32e-15,<br> "units": "(photons/(m^2\u00b7s))^(-0.7)"<br> },<br> <span style="color: plum;">"R_0,DPO":</span> {<br> "value": 5.45e-15,<br> "units": "mol/(m^2\u00b7s\u00b7kpa )\u00b7(photons/(m^2\u00b7s))^(-0.7)"<br> },<br> <span style="color: plum;">"E_a,DPO":</span> {<br> "value": 59.82,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"K_2D":</span> {<br> "value": 0.00328,<br> "units": "1/kPa"<br> },<br> <span style="color: plum;">"K_3D":</span> {<br> "value": 6.97e-15,<br> "units": "(photons/(m^2\u00b7s))^(-0.7)"<br> },<br> <span style="color: plum;">"R_0,hum":</span> {<br> "value": 9.2e-22,<br> "units": "mol/(m^2\u00b7s\u00b7kpa)\u00b7(photons/(m^2\u00b7s))^(-0.7)"<br> },<br> <span style="color: plum;">"E_a^hum":</span> {<br> "value": 19.3,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_a^therm":</span> {<br> "value": 43.42,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"R_0,therm":</span> {<br> "value": 0.00041,<br> "units": "mol/(m^2\u00b7s)"<br> }<br> }</pre></div></div><div><strong style="color: white;">D016:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "4/7/2023",<br> <span style="color: plum;">"DOI":</span> "10.1002/pip.2908",<br> <span style="color: plum;">"SourceTitle":</span> "Evaluation and modeling of the potential effects of a module manufacturing anomaly",<br> <span style="color: plum;">"Authors":</span> "Michael D Kempe, Dirk C Jordan",<br> <span style="color: plum;">"Reference":</span> "Kempe MD, Jordan DC. Evaluation and modeling of the potential effects of a module manufacturing anomaly. Prog Photovolt Res Appl. 2017. https://doi.org/10.1002/pip.2908",<br> <span style="color: plum;">"KeyWords":</span> "Damp Heat, Durability, Kinetics, Manufacturing Quality, Reliability, Solder Flux, Metallization contact resistance",<br> <span style="color: plum;">"Material":</span> "multi-crystalline Silicon",<br> <span style="color: plum;">"Degradation":</span> "Fill Factor",<br> <span style="color: plum;">"Comments":</span> "Degradation of metallization contact to the cell due to flux",<br> <span style="color: plum;">"EquationType":</span> "FF_Arrhenius",<br> <span style="color: plum;">"Equation":</span> "FF_t=FF_0\\cdot \\left( 1- \\frac{A_i}{A_o} \\cdot \\left< 1-e^{\\left[ -e^{\\left( B_1- \\frac{B_2}{R\\cdot T_K }-B_3\\cdot RH \\right) \\cdot t } \\right] } \\right> \\right)",<br> <span style="color: plum;">"FF":</span> {<br> "units": "%"<br> },<br> <span style="color: plum;">"B_1":</span> {<br> "value": 14.7,<br> "stdev": 4.4<br> },<br> <span style="color: plum;">"B_2":</span> {<br> "value": 76.22,<br> "stdev": 0.135,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"B_3":</span> {<br> "value": -0.005,<br> "stdev": 0.012,<br> "units": "1/%"<br> },<br> <span style="color: plum;">"A":</span> {<br> "value": 0.073,<br> "stdev": 0.02<br> },<br> <span style="color: plum;">"Corr-B_1-B_2":</span> 0.985,<br> <span style="color: plum;">"Corr-B_1-B_3":</span> 0.216,<br> <span style="color: plum;">"Corr-B_2-B_3":</span> 0.0452<br> }</pre></div></div><div><strong style="color: white;">D017:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "4/17/2023",<br> <span style="color: plum;">"SourceTitle":</span> "PV CONNECTORS, BOTTLENECK OF 40 YEARS LIFETIME MODULES?",<br> <span style="color: plum;">"Authors":</span> "Xuanji Yu , Ben Huang, Ruirui Lv, Jean-Nicolas Jaubert , Tao Xu, Guangchun Zhang",<br> <span style="color: plum;">"KeyWords":</span> "Connectors, Polymer sealing failure, metal pin corrosion, 40 year reliability",<br> <span style="color: plum;">"Material":</span> "Connectors",<br> <span style="color: plum;">"Degradation":</span> "Wet insulation resistance < 400Mohm",<br> <span style="color: plum;">"EquationType":</span> "Arrhenius_Connector",<br> <span style="color: plum;">"Equation":</span> "R_D=R_{0,T} \\cdot e^ {\\left( \\frac {-E_{a,T}}{R\\cdot T_K } \\right)}+R_{0,H}\\cdot RH^n\\cdot e^{ \\left( \\frac{-E_{a,H}}{R\\cdot T_K } \\right) }+R_{0,P}\\cdot G^P\\cdot e^{ \\left( \\frac {-E_{a,P}}{R\\cdot T_K } \\right) }",<br> <span style="color: plum;">"R_D":</span> {},<br> <span style="color: plum;">"R_0,T":</span> {},<br> <span style="color: plum;">"E_a,T":</span> {},<br> <span style="color: plum;">"R_0,H":</span> {},<br> <span style="color: plum;">"n":</span> {},<br> <span style="color: plum;">"E_a,H":</span> {},<br> <span style="color: plum;">"R_0,P":</span> {},<br> <span style="color: plum;">"p":</span> {},<br> <span style="color: plum;">"E_a,P":</span> {}<br> }</pre></div></div><div><strong style="color: white;">D018:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Jada Swailes",<br> <span style="color: plum;">"DateEntered":</span> "4/14/2023",<br> <span style="color: plum;">"DOI":</span> "10.1016/j.solmat.2011.02.013",<br> <span style="color: plum;">"SourceTitle":</span> "An Arrhenius approach to estimating organic photovoltaic module weathering acceleration factors",<br> <span style="color: plum;">"Authors":</span> "Olivier Haillant, David Dumbleton, Allen Zielnik"<br> }</pre></div></div><div><strong style="color: white;">D019:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "4/27/2023",<br> <span style="color: plum;">"DOI":</span> "10.1109/JPHOTOV.2018.2850527",<br> <span style="color: plum;">"SourceTitle":</span> "Quantification of Environmental Effects on PV Module Degradation: A Physics-Based Data Driven Modeling Method",<br> <span style="color: plum;">"Authors":</span> "Arun Bala Subramaniyan, Rong Pan, Joseph Kuitche, GovindaSamy TamizhMani",<br> <span style="color: plum;">"Reference":</span> "A. Bala Subramaniyan, R. Pan, J. Kuitche and G. TamizhMani, 'Quantification of Environmental Effects on PV Module Degradation: A Physics-Based Data-Driven Modeling Method,' in IEEE Journal of Photovoltaics, vol. 8, no. 5, pp. 1289-1296, Sept. 2018, doi: 10.1109/JPHOTOV.2018.2850527.",<br> <span style="color: plum;">"KeyWords":</span> "Outdoor, mono-crystalline Silicon, effeciency, Cumulative effects model",<br> <span style="color: plum;">"Material":</span> "mono-Crystalline Silicon",<br> <span style="color: plum;">"Degradation":</span> "Overall power generated",<br> <span style="color: plum;">"Comments":</span> "Uncertainties given using 95% confidence interval",<br> <span style="color: plum;">"EquationType":</span> "Arrhenius_Coffin_Manson_Peck",<br> <span style="color: plum;">"Equation":</span> "R_D=B_0\\cdot e^{\\left( \\frac{-B_1}{R\\cdot T_K}\\right)}\\cdot \u0394T^{B_2} \\cdot UV_{Daily}^{B_3}\\cdot {RH_{Daily}}^{B_4}",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/year"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "value": 0.35,<br> "stdev": 0.037,<br> "units": "1/sec"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 67.5,<br> "stdev": 7.25,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"m":</span> {<br> "value": 2.41,<br> "stdev": 0.03<br> },<br> <span style="color: plum;">"p":</span> {<br> "value": 0.75,<br> "stdev": 0.04375<br> },<br> <span style="color: plum;">"n":</span> {<br> "value": 1.52,<br> "stdev": 0.063<br> }<br> }</pre></div></div><div><strong style="color: white;">D020:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DOI":</span> "10.1109/PVSC45281.2020.9300638",<br> <span style="color: plum;">"SourceTitle":</span> "Failure modes of polyolefin encapsulated double glass modules and corresponding degradation modeling: Part 1 optical durability",<br> <span style="color: plum;">"Authors":</span> "Ben X. J. Yu, Ruirui Lv, Jean-Nicolas Jaubert, Guoqiang Xing, Julien Dupuis, Eric Sandre, Christophe Dugue, Gilles Goaer",<br> <span style="color: plum;">"Reference":</span> "B. X. J. Yu et al., 'Failure modes of polyolefin encapsulated double glass modules and corresponding degradation modeling: Part 1 optical durability,' 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 2020, pp. 1002-1007, doi: 10.1109/PVSC45281.2020.9300638.",<br> <span style="color: plum;">"KeyWords":</span> "Bifacial, Encapsulants, Delamination, Yellowing, Sevice Life predication",<br> <span style="color: plum;">"Material":</span> "Encapsulents, (POE, TPO, EVA)"<br> }</pre></div></div><div><strong style="color: white;">D021:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "5/15/2023",<br> <span style="color: plum;">"DOI":</span> "10.1109/PVSC.2018.8547944",<br> <span style="color: plum;">"SourceTitle":</span> "Acceleration Factor Modeling for Degradation Rate Prediction of Photovoltaic Encapsulant Discoloration",<br> <span style="color: plum;">"Authors":</span> "Archana Sinha, Shantanu Pore, Arun Balasubramaniyan, GovindaSamy TamizhMani",<br> <span style="color: plum;">"Reference":</span> "A. Sinha, S. Pore, A. Balasubramaniyan and G. TamizhMani, 'Acceleration Factor Modeling for Degradation Rate Prediction of Photovoltaic Encapsulant Discoloration,' 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 2018, pp. 1342-1346, doi: 10.1109/PVSC.2018.8547944.",<br> <span style="color: plum;">"KeyWords":</span> "Acceleration Factor, Arrhenius, degradation rate, encapsulant discoloration, Lifetime prediction",<br> <span style="color: plum;">"Material":</span> "EVA Encapsulent, Si-cells",<br> <span style="color: plum;">"Degradation":</span> "Encapsulent Discoloration, Isc loss",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot G^p\\cdot e^{\\left( \\frac{E_a}{R\\cdot T_K} \\right)}",<br> <span style="color: plum;">"R_D":</span> {<br> "value": 0.1,<br> "units": "%/year"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 29.91,<br> "units": "kJ/mol"<br> }<br> }</pre></div></div><div><strong style="color: white;">D022:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "5/15/2023",<br> <span style="color: plum;">"DOI":</span> "10.1002/apmc.1994.052160108",<br> <span style="color: plum;">"SourceTitle":</span> "The kinetics and mechanism of polyethylene photo-oxidation",<br> <span style="color: plum;">"Authors":</span> "J. J. C. Cruz-Pinto, M. E. S. Carvalho, J. F. A. Ferreira",<br> <span style="color: plum;">"Reference":</span> "Cruz Pinto, Jose Joaquim & Carvalho, M. & Ferreira, J.. (2003). The kinetics and mechanism of polyethylene photo-oxidation. Die Angewandte Makromolekulare Chemie. 216. 113 - 133. 10.1002/apmc.1994.052160108. ",<br> <span style="color: plum;">"KeyWords":</span> "Polyethylene, Photoxidation, Weathering, Mechanism, Kinetics",<br> <span style="color: plum;">"Material":</span> "Polyethylene",<br> <span style="color: plum;">"Degradation":</span> "Photoxidation",<br> <span style="color: plum;">"EquationType":</span> "Arrhenius_G_DeltaT",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot G\\cdot e^{\\left( \\frac{E_a}{R\\cdot T_K} \\right)}\\cdot \u0394T",<br> <span style="color: plum;">"E_a":</span> {<br> "value": 58.24,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/hour"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "units": "%/hour"<br> }<br> }</pre></div></div><div><strong style="color: white;">D024:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "5/26/2023",<br> <span style="color: plum;">"DOI":</span> "doi:10.1109/JPHOTOV.2020.3025240",<br> <span style="color: plum;">"SourceTitle":</span> "Temporary Recovery of the Defect Responsible for Light- and Elevated Temperature-Induced Degradation: Insights Into the Physical Mechanisms Behind LeTID",<br> <span style="color: plum;">"Authors":</span> "Wolfram Kwapil, Jonas Schon, Tim Niewelt, and Martin C. Schubert",<br> <span style="color: plum;">"Reference":</span> "W. Kwapil et al., IEEE J. Photovoltaics, vol. 10, no. 6, pp. 1591-1603, 2020, doi: 10.1109/JPHOTOV.2020.3025240.",<br> <span style="color: plum;">"KeyWords":</span> "Degradation, Defect reactions, light- and elevated temperature-induced degradation, LeTID, model, silicon defects.",<br> <span style="color: plum;">"Material":</span> "mc-Si cells",<br> <span style="color: plum;">"Degradation":</span> "LeTID",<br> <span style="color: plum;">"Comments":</span> "Cell_200Micron",<br> <span style="color: plum;">"EquationType":</span> "LeTID",<br> <span style="color: plum;">"v_ab":</span> {<br> "value": 33000000,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_ba":</span> {<br> "value": 4.7e-25,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_bc":</span> {<br> "value": 13100000,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_cb":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"E_(a, ab)":</span> {<br> "value": 78.7895,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, ba)":</span> {<br> "value": -110.9653,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, bc)":</span> {<br> "value": 84.0442,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, cb)":</span> {<br> "value": 0,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"x_ab":</span> {<br> "value": 1<br> },<br> <span style="color: plum;">"x_ba":</span> {<br> "value": 1.7<br> },<br> <span style="color: plum;">"x_bc":</span> {<br> "value": 1.2<br> }<br> }</pre></div></div><div><strong style="color: white;">D025:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "6/8/2023",<br> <span style="color: plum;">"DOI":</span> "doi:10.1557/s43577-022-00438-8",<br> <span style="color: plum;">"SourceTitle":</span> "Long-term impact of light- and elevated temperature-induced degradation on photovoltaic arrays",<br> <span style="color: plum;">"Authors":</span> "I.L. Repins, D.C. Jordan, M.Woodhouse, M. Theristis, J.S. Stein, H.P. Seigneur, D.J. Colvin, J.F. Karas, A.N. McPherson, C. Deline",<br> <span style="color: plum;">"Reference":</span> "I. Repins et al., MRS Bulletin, 2023. doi: 10.1557/s43577-022-00438-8.",<br> <span style="color: plum;">"KeyWords":</span> "LeTID, Indoor, Outdoor",<br> <span style="color: plum;">"Material":</span> "p-Si Cells",<br> <span style="color: plum;">"Degradation":</span> "LeTID",<br> <span style="color: plum;">"Comments":</span> "Cell_200Micron",<br> <span style="color: plum;">"EquationType":</span> "LeTID",<br> <span style="color: plum;">"v_ab":</span> {<br> "value": 46700000,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_ba":</span> {<br> "value": 4.7e-25,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_bc":</span> {<br> "value": 19900000,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_cb":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"E_(a, ab)":</span> {<br> "value": 78.7895,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, ba)":</span> {<br> "value": -110.9653,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, bc)":</span> {<br> "value": 84.0442,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, cb)":</span> {<br> "value": 0,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"x_ab":</span> {<br> "value": 1<br> },<br> <span style="color: plum;">"x_ba":</span> {<br> "value": 1.7<br> },<br> <span style="color: plum;">"x_bc":</span> {<br> "value": 1.2<br> }<br> }</pre></div></div><div><strong style="color: white;">D026:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "6/8/2023",<br> <span style="color: plum;">"DOI":</span> "doi:10.1016/j.solmat.2017.08.007",<br> <span style="color: plum;">"SourceTitle":</span> "Light-induced lifetime degradation in high-performance multicrystalline silicon: Detailed kinetics of the defect activation",<br> <span style="color: plum;">"Authors":</span> "Dennis Bredemeier, Dominic Walter, Jan Schmidt",<br> <span style="color: plum;">"Reference":</span> "D. Bredemeier et al., Sol. Energy Mater. Sol. Cells, vol. 173, pp. 2-5, 2017, doi: 10.1016/j.solmat.2017.08.007.",<br> <span style="color: plum;">"KeyWords":</span> "multi-Si, LeTID, ",<br> <span style="color: plum;">"Material":</span> "multi-Si",<br> <span style="color: plum;">"Degradation":</span> "LeTID",<br> <span style="color: plum;">"Comments":</span> "ab158micronwafer_bc200microncell",<br> <span style="color: plum;">"EquationType":</span> "LeTID",<br> <span style="color: plum;">"v_ab":</span> {<br> "value": 937000000,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_ba":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_bc":</span> {<br> "value": 21500000,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_cb":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"E_(a, ab)":</span> {<br> "value": 85.8775,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, ba)":</span> {<br> "value": 0,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, bc)":</span> {<br> "value": 90.7021,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, cb)":</span> {<br> "value": 0,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"x_ab":</span> {<br> "value": 1<br> },<br> <span style="color: plum;">"x_ba":</span> {<br> "value": 1.7<br> },<br> <span style="color: plum;">"x_bc":</span> {<br> "value": 1.2<br> }<br> }</pre></div></div><div><strong style="color: white;">D027:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "6/9/2023",<br> <span style="color: plum;">"DOI":</span> "doi:10.1109/JPHOTOV.2021.3078367",<br> <span style="color: plum;">"SourceTitle":</span> "The Influence of Minority Carrier Density on Degradation and Regeneration Kinetics in Multicrystalline Silicon Wafers",<br> <span style="color: plum;">"Authors":</span> "Guro Marie Wyller, Marie Syre Wiig, Ida Due-Sorensen, Rune Sondena",<br> <span style="color: plum;">"Reference":</span> "G. Wyller et al., IEEE J. Photovoltaics, vol. 11, no. 4, pp. 878-889, 2021, doi: 10.1109/JPHOTOV.2021.3078367.",<br> <span style="color: plum;">"KeyWords":</span> "p-type mc-Si Perc, Degradation, LeTID, Hydrogen Involvement",<br> <span style="color: plum;">"Material":</span> "p-type mc-Si Perc",<br> <span style="color: plum;">"Degradation":</span> "LeTID",<br> <span style="color: plum;">"Comments":</span> "wafer_180micron",<br> <span style="color: plum;">"EquationType":</span> "LeTID",<br> <span style="color: plum;">"v_ab":</span> {<br> "value": 1900000000000,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_ba":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_bc":</span> {<br> "value": 0.284,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_cb":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"E_(a, ab)":</span> {<br> "value": 133.1584,<br> "stdev": 13.5088,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, ba)":</span> {<br> "value": 0,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, bc)":</span> {<br> "value": 54.0353,<br> "stdev": 11.579,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, cb)":</span> {<br> "value": 0,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"x_ab":</span> {<br> "value": 1<br> },<br> <span style="color: plum;">"x_ba":</span> {<br> "value": 1.7<br> },<br> <span style="color: plum;">"x_bc":</span> {<br> "value": 1.2<br> }<br> }</pre></div></div><div><strong style="color: white;">D028:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "6/9/2023",<br> <span style="color: plum;">"DOI":</span> "doi:10.1109/JPHOTOV.2021.3078368",<br> <span style="color: plum;">"SourceTitle":</span> "The Influence of Minority Carrier Density on Degradation and Regeneration Kinetics in Multicrystalline Silicon Wafers",<br> <span style="color: plum;">"Authors":</span> "Guro Marie Wyller, Marie Syre Wiig, Ida Due-Sorensen, Rune Sondena",<br> <span style="color: plum;">"Reference":</span> "G. Wyller et al., IEEE J. Photovoltaics, vol. 11, no. 4, pp. 878-889, 2021, doi: 10.1109/JPHOTOV.2021.3078367.",<br> <span style="color: plum;">"KeyWords":</span> "p-type mc-Si Perc, Degradation, LeTID, Hydrogen Involvement",<br> <span style="color: plum;">"Material":</span> "p-type mc-Si Perc",<br> <span style="color: plum;">"Degradation":</span> "LeTID",<br> <span style="color: plum;">"Comments":</span> "wafer_200micron",<br> <span style="color: plum;">"EquationType":</span> "LeTID",<br> <span style="color: plum;">"v_ab":</span> {<br> "value": 483000,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_ba":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_bc":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_cb":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"E_(a, ab)":</span> {<br> "value": 64.0704,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, ba)":</span> {<br> "value": 0,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, bc)":</span> {<br> "value": 90.7986,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, cb)":</span> {<br> "value": 0,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"x_ab":</span> {<br> "value": 1<br> },<br> <span style="color: plum;">"x_ba":</span> {<br> "value": 1.7<br> },<br> <span style="color: plum;">"x_bc":</span> {<br> "value": 1.2<br> }<br> }</pre></div></div><div><strong style="color: white;">D029:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "6/12/2023",<br> <span style="color: plum;">"DOI":</span> "doi:10.1063/1.5123890",<br> <span style="color: plum;">"SourceTitle":</span> "Determination of BO-LID and LeTID related activation energies in Cz-Si and FZ-Si using constant injection conditions",<br> <span style="color: plum;">"Authors":</span> "Alexander Graf, Axel Herguth, Giso Hahn",<br> <span style="color: plum;">"Reference":</span> "A. Graf, et al., AIP Conference Proceedings, vol. 2147, no. 1, p. 140003, 2019, doi: 10.1063/1.5123890.",<br> <span style="color: plum;">"KeyWords":</span> "Si, Boron Doped, LeTID, Degradation",<br> <span style="color: plum;">"Material":</span> "Si, CZ FZ grown",<br> <span style="color: plum;">"Degradation":</span> "LeTID",<br> <span style="color: plum;">"Comments":</span> "wafer_152micron",<br> <span style="color: plum;">"EquationType":</span> "LeTID",<br> <span style="color: plum;">"v_ab":</span> {<br> "value": 483000,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_ba":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_bc":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"v_cb":</span> {<br> "value": 0,<br> "units": "(cm^3x)/s"<br> },<br> <span style="color: plum;">"E_(a, ab)":</span> {<br> "value": 75.2364,<br> "stdev": 8.7,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, ba)":</span> {<br> "value": 0,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, bc)":</span> {<br> "value": 59.8248,<br> "stdev": 8.7,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"E_(a, cb)":</span> {<br> "value": 0,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"x_ab":</span> {<br> "value": 1<br> },<br> <span style="color: plum;">"x_ba":</span> {<br> "value": 1.7<br> },<br> <span style="color: plum;">"x_bc":</span> {<br> "value": 1.2<br> }<br> }</pre></div></div><div><strong style="color: white;">D030:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "6/15/2023",<br> <span style="color: plum;">"DOI":</span> "10.1007/3-540-61218-1_6",<br> <span style="color: plum;">"SourceTitle":</span> "Wavelength sensitivity in polymer photodegradation",<br> <span style="color: plum;">"Authors":</span> "Anthony L Andrady",<br> <span style="color: plum;">"Reference":</span> "Andrady, A.L. (1997). Wavelength sensitivity in polymer photodegradation. In: Polymer Analysis Polymer Physics. Advances in Polymer Science, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61218-1_6",<br> <span style="color: plum;">"KeyWords":</span> "Photodegradation, Vinyl Chloride, Activation Spectrum, Action Spectrum",<br> <span style="color: plum;">"Material":</span> "Naturally Occuring Polymers, Synthetic Polymers",<br> <span style="color: plum;">"Degradation":</span> "Photodegradation",<br> <span style="color: plum;">"EquationType":</span> "Activation Spectrum",<br> <span style="color: plum;">"Equation":</span> "Activation Spectrum={E_L}\\cdot R_0\\cdot e^{\\left( -B_g\\cdot \u03bb \\right)}",<br> <span style="color: plum;">"E_L":</span> {},<br> <span style="color: plum;">"R_0":</span> {},<br> <span style="color: plum;">"B_g":</span> {},<br> <span style="color: plum;">"L":</span> {}<br> }</pre></div></div><div><strong style="color: white;">D031:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "6/16/2023",<br> <span style="color: plum;">"SourceTitle":</span> "A Characterization of the Relationship Between Light Intensity and Degradation Rate for Weathering Durability",<br> <span style="color: plum;">"Authors":</span> "Henry K. Hardcastle",<br> <span style="color: plum;">"KeyWords":</span> "Durability, EMMA, Degradation Rate",<br> <span style="color: plum;">"Material":</span> "Polycarbonate",<br> <span style="color: plum;">"Degradation":</span> "Yellowness index",<br> <span style="color: plum;">"EquationType":</span> "Arrhenius",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot G_{340}^P\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) }",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "YI/s"<br> },<br> <span style="color: plum;">"p":</span> {<br> "value": 0.89<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "units": "kJ/mol"<br> }<br> }</pre></div></div><div><strong style="color: white;">D032:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "6/16/2023",<br> <span style="color: plum;">"DOI":</span> "10.4229/EUPVSEC20142014-5CO.5.4",<br> <span style="color: plum;">"SourceTitle":</span> "PV AGING MODEL APPLIED TO SEVERAL METEOROLOGICAL CONDITIONS",<br> <span style="color: plum;">"Authors":</span> "Beno\u00eet Braisaz1 , Chlo\u00e9 Duchayne, Mike Van Iseghem, Khalid Radouane",<br> <span style="color: plum;">"Reference":</span> "Braisaz, B., et al. (2014). PV aging model applied to several meteorological conditions.",<br> <span style="color: plum;">"KeyWords":</span> "Aging, Damp heat, Outdoor, PV modeling, Models, PV module, degradation rate, Activation Energy, PID, cracks, UV",<br> <span style="color: plum;">"Material":</span> "Double Diode module",<br> <span style="color: plum;">"Degradation":</span> "Damp Heat Corrosion Model",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot RH^n\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) }",<br> <span style="color: plum;">"R_0":</span> {},<br> <span style="color: plum;">"n":</span> {<br> "value": 2<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 127.3689,<br> "units": "kJ/mol"<br> }<br> }</pre></div></div><div><strong style="color: white;">D033:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "6/8/2023",<br> <span style="color: plum;">"DOI":</span> "doi:10.1016/j.solmat.2017.08.007",<br> <span style="color: plum;">"SourceTitle":</span> "Light-induced lifetime degradation in high-performance multicrystalline silicon: Detailed kinetics of the defect activation",<br> <span style="color: plum;">"Authors":</span> "Dennis Bredemeier, Dominic Walter, Jan Schmidt",<br> <span style="color: plum;">"Reference":</span> "D. Bredemeier et al., Sol. Energy Mater. Sol. Cells, vol. 173, pp. 2-5, 2017, doi: 10.1016/j.solmat.2017.08.007.",<br> <span style="color: plum;">"KeyWords":</span> "multi-Si, LeTID, ",<br> <span style="color: plum;">"Material":</span> "multi-Si",<br> <span style="color: plum;">"Degradation":</span> "LeTID",<br> <span style="color: plum;">"Comments":</span> "ab158micronwafer_bc200microncell",<br> <span style="color: plum;">"EquationType":</span> "LeTID",<br> <span style="color: plum;">"x_ab":</span> {<br> "value": 1<br> }<br> }</pre></div></div><div><strong style="color: white;">D034:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "6/9/2023",<br> <span style="color: plum;">"DOI":</span> "doi:10.1109/JPHOTOV.2021.3078368",<br> <span style="color: plum;">"SourceTitle":</span> "The Influence of Minority Carrier Density on Degradation and Regeneration Kinetics in Multicrystalline Silicon Wafers",<br> <span style="color: plum;">"Authors":</span> "Guro Marie Wyller, Marie Syre Wiig, Ida Due-S\u00f8rensen, Rune S\u00f8nden\u00e5",<br> <span style="color: plum;">"Reference":</span> "G. Wyller et al., IEEE J. Photovoltaics, vol. 11, no. 4, pp. 878-889, 2021, doi: 10.1109/JPHOTOV.2021.3078367.",<br> <span style="color: plum;">"KeyWords":</span> "p-type mc-Si Perc, Degradation, LeTID, Hydrogen Involvement",<br> <span style="color: plum;">"Material":</span> "p-type mc-Si Perc",<br> <span style="color: plum;">"Degradation":</span> "LeTID",<br> <span style="color: plum;">"Comments":</span> "wafer_200micron",<br> <span style="color: plum;">"EquationType":</span> "LeTID",<br> <span style="color: plum;">"x_bc":</span> {<br> "value": 1.2<br> }<br> }</pre></div></div><div><strong style="color: white;">D035:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Weston Wall",<br> <span style="color: plum;">"DateEntered":</span> "5/26/2023",<br> <span style="color: plum;">"DOI":</span> "doi:10.1109/JPHOTOV.2020.3025240",<br> <span style="color: plum;">"SourceTitle":</span> "Temporary Recovery of the Defect Responsible for Light- and Elevated Temperature-Induced Degradation: Insights Into the Physical Mechanisms Behind LeTID",<br> <span style="color: plum;">"Authors":</span> "Wolfram Kwapil, Jonas Sch\u00f6n, Tim Niewelt, and Martin C. Schubert",<br> <span style="color: plum;">"Reference":</span> "W. Kwapil et al., IEEE J. Photovoltaics, vol. 10, no. 6, pp. 1591-1603, 2020, doi: 10.1109/JPHOTOV.2020.3025240.",<br> <span style="color: plum;">"KeyWords":</span> "Degradation, Defect reactions, light- and elevated temperature-induced degradation, LeTID, model, silicon defects.",<br> <span style="color: plum;">"Material":</span> "mc-Si cells",<br> <span style="color: plum;">"Degradation":</span> "LeTID",<br> <span style="color: plum;">"Comments":</span> "Cell_200Micron",<br> <span style="color: plum;">"EquationType":</span> "LeTID",<br> <span style="color: plum;">"x_ba":</span> {<br> "value": 1.7<br> }<br> }</pre></div></div><div><strong style="color: white;">D036:</strong> <span onclick="this.nextElementSibling.style.display = this.nextElementSibling.style.display === 'none' ? 'block' : 'none'" style="cursor: pointer; color: white;">▼</span><div style="display: none;"><pre style="color: white; background-color: black; padding: 10px; border-radius: 5px;"> {<br> <span style="color: plum;">"DataEntryPerson":</span> "Michael Kempe",<br> <span style="color: plum;">"DateEntered":</span> "2/14/2025",<br> <span style="color: plum;">"DOI":</span> "10.1109/PVSC45281.2020.9300357",<br> <span style="color: plum;">"SourceTitle":</span> "Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets",<br> <span style="color: plum;">"Authors":</span> "Michael D Kempe, Peter Hacke, Joshua Morse, Michael Owen-Bellini, Derek Holsapple, Trevor Lockman, Samantha Hoang, David Okawa, Tamir Lance, Hoi Hong Ng",<br> <span style="color: plum;">"Reference":</span> "Kempe, M. D., et al. (2020). Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC).",<br> <span style="color: plum;">"KeyWords":</span> "Humidity, Irradiance, reciprocity",<br> <span style="color: plum;">"Material":</span> "Flexible Frontsheet, Frontsheet Coatings",<br> <span style="color: plum;">"Degradation":</span> "UV Cut On, UV Transmittance 310nm-350nm, Yellowness index, SPQEWT",<br> <span style="color: plum;">"EquationType":</span> "arrhenius",<br> <span style="color: plum;">"Equation":</span> "R_D=R_0\\cdot RH^n\\cdot G_{340}^P\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) }",<br> <span style="color: plum;">"R_D":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"R_0":</span> {<br> "units": "%/h"<br> },<br> <span style="color: plum;">"E_a":</span> {<br> "value": 38.7,<br> "stdev": 21.7,<br> "units": "kJ/mol"<br> },<br> <span style="color: plum;">"p":</span> {<br> "value": 0.49,<br> "stdev": 0.22<br> },<br> <span style="color: plum;">"Corr-E_a-P":</span> {<br> "value": -0.606<br> }<br> }</pre></div></div></div>
This next set of codes will take the data from the extracted portion of the Json library and create a list of variables from it. If more variables need to be modified or added, this is where it should be done.
deg_data = pvdeg.utilities.read_material(
fp=DATA_DIR, key="D036", pvdeg_file="DegradationDatabase"
)
display(deg_data)
{'DataEntryPerson': 'Michael Kempe',
'DateEntered': '2/14/2025',
'DOI': '10.1109/PVSC45281.2020.9300357',
'SourceTitle': 'Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets',
'Authors': 'Michael D Kempe, Peter Hacke, Joshua Morse, Michael Owen-Bellini, Derek Holsapple, Trevor Lockman, Samantha Hoang, David Okawa, Tamir Lance, Hoi Hong Ng',
'Reference': 'Kempe, M. D., et al. (2020). Highly Accelerated UV Stress Testing for Transparent Flexible Frontsheets. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC).',
'KeyWords': 'Humidity, Irradiance, reciprocity',
'Material': 'Flexible Frontsheet, Frontsheet Coatings',
'Degradation': 'UV Cut On, UV Transmittance 310nm-350nm, Yellowness index, SPQEWT',
'EquationType': 'arrhenius',
'Equation': 'R_D=R_0\\cdot RH^n\\cdot G_{340}^P\\cdot e^{ \\left( \\frac{-E_a}{R\\cdot T_K } \\right) }',
'R_D': {'units': '%/h'},
'R_0': {'units': '%/h'},
'E_a': {'value': 38.7, 'stdev': 21.7, 'units': 'kJ/mol'},
'p': {'value': 0.49, 'stdev': 0.22},
'Corr-E_a-P': {'value': -0.606}}
Here we pull out the relevant equation code identifier needed for running the calculations.
func = "pvdeg.degradation." + deg_data["EquationType"]
print(func)
display(Math("\\Large " + deg_data["Equation"]))
pvdeg.degradation.arrhenius
3. Calculate Absolute Degradation Rate#
To do this calculation, we must have degradation parameter data for a process that is complete with all the necessary variables.
func_call = getattr(pvdeg.degradation, deg_data["EquationType"])
degradation = func_call(weather_df=weather_df, parameters=deg_data)
print(
"Average degradation rate for a year", degradation / 8760, deg_data["R_0"]["units"]
)
R_0 not provided, defaulting to 1.
Using poa_global from weather_df for irradiance.
Average degradation rate for a year 6.0180460350138795e-06 %/h