Standoff Monte Carlo#

See Monte Carlo - Arrhenius Degredation for a more in depth guide. Steps will be shortened for brevity. This journal applies a Monte Carlo to the Standoff Calculation

# if running on google colab, uncomment the next line and execute this cell to install the dependencies and prevent "ModuleNotFoundError" in later cells:
# !pip install pvdeg
import pvlib
import numpy as np
import pandas as pd
import json
import pvdeg
import matplotlib.pyplot as plt
# This information helps with debugging and getting support :)
import sys
import platform

print("Working on a ", platform.system(), platform.release())
print("Python version ", sys.version)
print("Pandas version ", pd.__version__)
print("Pvlib version ", pvlib.__version__)
print("Pvdeg version ", pvdeg.__version__)
Working on a  Linux 6.11.0-1018-azure
Python version  3.11.14 (main, Oct 10 2025, 01:03:14) [GCC 13.3.0]
Pandas version  2.3.3
Pvlib version  0.13.1
Pvdeg version  0.1.dev1+g25fa88ae5

Simple Standoff Calculation#

This is copied from another tutorial called 4 - Standards.ipynb, please visit this page for a more in depth explanation of the process for a single standoff calculation.

Please use your own API key: The block below makes an NSRDB API to get weather and meta data. This tutorial will work with the DEMO Key provided, but it will take you less than 3 minutes to obtain your own at https://developer.nrel.gov/signup/ so register now.)
# Load weather data from locally saved files to avoid API rate limits
WEATHER = pd.read_csv("../data/psm4_nyc.csv", index_col=0, parse_dates=True)
with open("../data/meta_nyc.json", "r") as f:
    META = json.load(f)

# To use the NSRDB API instead, uncomment the lines below and add your API key
# Get your API key at: https://developer.nrel.gov/signup/
# weather_db = "PSM4"
# weather_id = (40.633365593159226, -73.9945801019899)  # Manhattan, NYC
# weather_arg = {
#     "api_key": "YOUR_API_KEY",
#     "email": "user@mail.com",
#     "map_variables": True,
# }
# WEATHER, META = pvdeg.weather.get(weather_db, weather_id, **weather_arg)
# simple standoff calculation
height1 = pvdeg.standards.standoff(weather_df=WEATHER, meta=META)

# more arguments standoff calculation
height2 = pvdeg.standards.standoff(
    weather_df=WEATHER,
    meta=META,
    tilt=None,
    azimuth=180,
    sky_model="isotropic",
    temp_model="sapm",
    x_0=6.1,
    wind_factor=0.33,  # default
)

print(height1)
print(height2)
The array surface_tilt angle was not provided, therefore the latitude of  40.6 was used.
The array azimuth was not provided, therefore an azimuth of  180.0 was used.
The array surface_tilt angle was not provided, therefore the latitude of  40.6 was used.
          x      T98_0    T98_inf
0  0.522443  71.778148  48.754265
          x      T98_0    T98_inf
0  0.490293  71.778148  48.754265

Defining Correlation Coefficients, Mean and Standard Deviation For Monte Carlo Simulation#

We will leave the list of correlations blank because our variables are not correlated. For a correlated use case visit the Monte Carlo - Arrhenius.ipynb tutorial.

Mean and standard deviation must always be populated if being used to create a dataset. However, you can feed your own correlated or uncorrelated data into the simulate function but column names must be consistent.

# These numbers may not make sense in the context of the problem but work for demonstraiting the process
stats = {"X_0": {"mean": 5, "stdev": 3}, "wind_factor": {"mean": 0.33, "stdev": 0.5}}

corr_coeff = []

samples = pvdeg.montecarlo.generateCorrelatedSamples(corr_coeff, stats, 500)
print(samples)
          X_0  wind_factor
0    2.621905     0.182699
1   -0.155672     0.466237
2    2.888131     0.521454
3    5.956088     1.544551
4    2.577917     0.366486
..        ...          ...
495  7.599369    -0.149063
496  6.499046     0.469731
497  5.187625     0.464210
498  2.075401     0.386871
499 -2.083049     0.365401

[500 rows x 2 columns]

Standoff Monte Carlo Inputs#

When using the pvdeg.montecarlo.simulate() function on a target function all of the target function’s required arguments must still be given. Our non-changing arguments will be stored in a dictionary. The randomized monte carlo input data will also be passed to the target function via the simulate function. All required target function arguments should be contained between the column names of the randomized input data and fixed argument dictionary,

# defining arguments to pass to the target function, standoff() in this case
function_kwargs = {
    "weather_df": WEATHER,
    "meta": META,
    "azimuth": 180,
    "tilt": 0,
    "temp_model": "sapm",
    "sky_model": "isotropic",
    "conf_0": "insulated_back_glass_polymer",
    "conf_inf": "open_rack_glass_polymer",
    "T98": 70,
    "irradiance_kwarg": {},
    "conf_0_kwarg": {},
    "conf_inf_kwarg": {},
    "model_kwarg": {},
}

# notice how we left off parts we want to use in the monte carlo simulation because they are already contained in the dataframe

results = pvdeg.montecarlo.simulate(
    func=pvdeg.standards.standoff,
    correlated_samples=samples,
    **function_kwargs,
)

Dealing With Series#

Notice how our results are contained in a pandas series instead of a dataframe.

This means we have to do an extra step to view our results. Run the block below to confirm that our results are indeed contained in a series. And convert them into a simpler dataframe.

print(type(results))

# Convert from pandas Series to pandas DataFrame
results_df = pd.concat(results.tolist()).reset_index(drop=True)
<class 'pandas.core.series.Series'>
print(results_df)
            x      T98_0    T98_inf
0    0.145433  71.198899  48.979796
1    0.012157  68.266642  46.925381
2    0.000000  67.638826  46.401058
3    0.000000  46.829346  35.426679
4    0.000000  69.277934  47.630760
..        ...        ...        ...
495  1.372659  73.840082  50.602662
496  0.000000  68.232791  46.895884
497  0.000000  68.286212  46.942451
498  0.000000  69.004264  47.552714
499  0.067212  69.290027  47.639305

[500 rows x 3 columns]

Viewing Our Data#

Let’s plot the results using a histogram

bin_edges = np.arange(results_df["x"].min(), results_df["x"].max() + 0.1, 0.05)
plt.figure(figsize=(8, 6))
plt.hist(
    results_df["x"],
    bins=bin_edges,
    edgecolor="blue",
    histtype="step",
    linewidth=1,
    label="Standoff Distance",
)
plt.ylabel("Counts (out of n trials)")
plt.xlabel("standoff distance [m]")
plt.axvline(np.mean(results_df["x"]), color="red", label="mean")
plt.axvline(np.median(results_df["x"]), linestyle="--", label="median")

plt.legend()
plt.grid(True)
plt.show()
../_images/cf0b0f745fee33ffefdef34e503d73a3c083cea1937213a15710187d8f3ed15a.png