Source code for tfmelt.utils.preprocessing

from typing import Any, Optional

from sklearn.preprocessing import (
    MinMaxScaler,
    PowerTransformer,
    QuantileTransformer,
    RobustScaler,
    StandardScaler,
)


[docs] class IdentityScaler: """ A scaler that performs no scaling, behaving like an identity function. This class is useful for pipelines where a scaler is optional, but the pipeline expects a fit and transform method to be present like in Scikit-learn. """ def __init__(self, **kwargs): self.scale_ = 1.0
[docs] def fit(self, X, y: Optional[Any] = None): """ Dummy fit method that does nothing. Args: X (array-like): Input data. y (array-like): Ignored. """ return self
[docs] def transform(self, X): """ Dummy transform method that returns the input data unchanged. Args: X (array-like): Input data. """ return X
[docs] def fit_transform(self, X, y: Optional[Any] = None): """ Dummy fit_transform method that returns the input data unchanged. Args: X (array-like): Input data. y (array-like): Ignored. """ return self.fit(X, y).transform(X)
[docs] def inverse_transform(self, X): """ Dummy inverse_transform method that returns the input data unchanged. Args: X (array-like): Input data. """ return X
[docs] def get_normalizers( norm_type: Optional[str] = "standard", n_normalizers: Optional[int] = 1, **kwargs ): """ Get a list of normalizers based on the specified normalization type and number of normalizers. Args: norm_type (str, optional): Type of normalization ('standard', 'minmax', 'robust', 'power', 'quantile'). Defaults to 'standard'. n_normalizers (int, optional): Number of normalizers to create. Defaults to 1. **kwargs: Additional keyword arguments for the specific scaler. Returns: list: A list of normalizers. """ # Supported normalization types normalizers = { "standard": StandardScaler, "minmax": MinMaxScaler, "robust": RobustScaler, "power": PowerTransformer, "quantile": QuantileTransformer, "none": IdentityScaler, } # Check if the normalization type is supported if norm_type not in normalizers: raise ValueError(f"Unsupported normalization type: {norm_type}") scaler_class = normalizers[norm_type] # Extract relevant supported kwargs for each scaler scaler_params = { "minmax": ["feature_range"], "quantile": ["output_distribution", "n_quantiles", "random_state"], "power": ["method", "standardize"], } relevant_kwargs = { key: value for key, value in kwargs.items() if key in scaler_params.get(norm_type, []) } # Create the specified number of normalizers normalizers_list = [scaler_class(**relevant_kwargs) for _ in range(n_normalizers)] # Return the list of normalizers return normalizers_list