fied.analysis package¶
Submodules¶
fied.analysis.analysis_figures module¶
- class FIED_analysis(year, file_path=None, pio_engine=None, df=None, fig_format='png')[source]¶
Bases:
object
- get_cbp_data()[source]¶
Get establishment counts from Census County Business Patterns for reporting year.
- Returns:
cbp_data – DataFrame of CBP establishment counts by NAICS code for U.S. for specified year.
- Return type:
pandas.DataFrame
- summary_unit_table(eis_or_ghgrp_only=False)[source]¶
Creates a table that summarizes by industrial sector (i.e., 2-digit NAICS) various aspects of the dataset. Saves table to analysis directory and returns table.
- Parameters:
final_data (pandas.DataFrame or parquet)
- Returns:
summary_table
- Return type:
pandas.DataFrame
- plot_facility_count(write_fig=True)[source]¶
” Plots the count of facilities from foundational data and the count of establishments from the corresponding year of Census Business Patterns (CBP) data.
- Parameters:
write_fig (bool; default=True) – Write resulting figure to analysis figures directory.
- static plot_difference_nei(nei, data)[source]¶
Plot difference between max and min energy or throughput quanitites for units when there are multiple emissions per unit.
- Parameters:
nei (pandas.DataFrame) – Unformatted NEI, prior to estimating quartile values for throughput and energy.
data (str; 'energy' or 'throughput')
- id_sectors(df)[source]¶
Make a new sector column for NAICS 2-digit
- Returns:
df – FIED with 2-digit NAICS code column
- Return type:
pandas.DataFrame
- summary_unit_bar(summary_table, write_fig=True)[source]¶
Make stacked bar chart showing units by Sector and total number of facilities reporting units
Paramters¶
- summary_tablepandas.DataFrame
Output of summary_unit_table method.
- write_figbool; default=True
Write figure to analysis figures directory
- set_mecs_data(year=2018)[source]¶
” MECS format is not machine-friendly. This is a manual input of MECS combustion energy estimates from MECS Table 3.2: https://www.eia.gov/consumption/manufacturing/about.php
- Returns:
mecs – Dictionary of combustion energy estimates from MECS (converted from TBtu to MJ), on a national and census region basis.
- Return type:
- get_eia_seds(year=2017)[source]¶
Get EIA State Energy Data System (SEDS) data
- Parameters:
year (int; default=2017) – Year of SEDS data to return.
- Returns:
seds
- Return type:
pandas.DataFrame
- plot_eia_comparison_maps(dataset, year=2017, write_fig=True)[source]¶
Plots a relative comparison of FIED vs. EIA on a geographic basis (combustion energy only). For MECS, this is census region; for SEDS, states.
- Parameters:
dataset (str; {'mecs', 'seds'}) – EIA dataset to compare FIED against.
year (int; default=2017)
write_fig (bool; default=True) – Write figure to analysis figures directory
- plot_eia_comparison(eia_mecs=15680000000000.0, eia_mer=23160000000000.0)[source]¶
Plot bar chart depicting FIED energy estimates relative to EIA estimates.
- Parameters:
eia_mecs (float; default=1.568E13) – Combustion energy use (in MJ) from EIA Manufacturing Consumption survey. Default represents 2018 value.
eia_mer (float; default=2.316E13) – Combustion energy use (in MJ) for industry from EIA Monthly Energy Review (MER). Default represents 2017 value.
- plot_unit_bubble_map(unit_type, measure, max_size=66, write_fig=True)[source]¶
Plot locations of a single standard unit type by either energy (MJ) or design capacity.
- Parameters:
unit_type (str) – Standard unit type: ‘other combustion’, ‘kiln’, ‘dryer’, ‘boiler’, ‘heater’, ‘turbine’, ‘oven’, ‘engine’, ‘furnace’, ‘thermal oxidizer’, ‘incinerator’, ‘other’, ‘generator’, ‘flare’, ‘stove’, ‘compressor’, ‘pump’, ‘building heat’, ‘distillation’
measure (str; {'energy', 'power', 'ghgs'}) – Either ‘energy’ (results in MJ), ‘power’ (results in MW), or ‘ghgs’ (results in MTCO2e)
max_size (int) – Max size of bubbles on map
write_fig (bool; default=True) – Write figure to analysis figures directory
- plot_rel_bar_missing(write_fig=True)[source]¶
Creates a simple stacked bar showing relative amount (percentage) of GHGRP and NEI facilities with and without unit-level data.
- Parameters:
write_fig (bool; default=True) – Write figure to analysis figures directory
- plot_stacked_bar_missing(naics_level=2, data_subset=None, write_fig=True)[source]¶
” Creates stacked bar showing counts of facilities with and without unit-level data.
- Parameters:
naics_level (int; default=2) – Specific level of NAICS aggregation to display data. NAICS is a range of integers from 2 to 6.
data_subset (str; {None, 'ghgrp', 'nei'}) – Plot subset of data, either facilities that are GHGRP or NEI reporters
rel_total (bool; default=False) – Plot the relative total of NEI and GHGRP facilities that have unit-level characterization. Renders naics_level and data_subset obsolete.
write_fig (bool; default=True) – Write figure to analysis figures directory
- plot_ut_by_naics(naics_level=None, variable='count', write_fig=True)[source]¶
Creates a table that summarizes by industrial sector (i.e., 2-digit NAICS) various aspects of the dataset
- Parameters:
naics_level (int; default=None) – Specified NAICS level (None or 2 - 6)
variable (str; {'count', 'energy', 'capacity'})
write_fig (bool; default=True) – Write figure to analysis figures directory
- make_consistent_naics_column(final_data, n)[source]¶
Creates a column of consisently aggregated NAICS codes (i.e., same number of digits) when a column of NAICS codes contains different levels of aggregation. Will only include
- Parameters:
final_data (pandas.DataFrame or parquet)
n (int; 2 to 6) – Specified NAICS level
- Returns:
analysis_data – Returns original DataFrame with new column named f’n{n}’.
- Return type:
pandas.DataFrame
fied.analysis.boiler_inventory_comparison module¶
- convert_units(x, unit)[source]¶
Convert energy units from MMBtu to MJ and power units from MMBtu/hr to MW.
- get_boiler_data(boiler_url)[source]¶
Download Northwestern boiler inventory and return it as a dataframe.
- Parameters:
boiler_url (str) – URL for Northwestern boiler inventory
- Returns:
bdb – Boiler inventory as a pandas DataFrame
- Return type:
pandas.DataFrame
- get_fied_boiler(fied_path)[source]¶
Load FIED and return information only on boilers.
- Parameters:
fied_path (str)
- Returns:
fied_boiler
- Return type:
pandas.DataFrame
- compare_boilers_aggregate(bdb, fied_boiler, compare_type=None)[source]¶
Compare either county or NAICS (3-digit) sums of design capacity and energy estimates.
- Parameters:
bdb (pandas.DataFrame)
fied_boiler (pandas.DataFrame)
type (str, {'county', 'naics'}) – Aggregate data sets at either county- or naics-level.
- Returns:
comparison
- Return type:
pandas.DataFrame
- compare_boilers_units(bdb, fied_boiler)[source]¶
Compare boiler inventory and FIED boilers on an individual unit level. Includes only
- Parameters:
bdb (pandas.DataFrame)
fied_boiler (pandas.DataFrame)
- Returns:
units (pandas.DataFrame)
units_summary (pandas.DataFrame)
- plot_scatter_comparison(comparison, compare_type=None, write_fig=True)[source]¶
Creates two subplots that compare county sums of design capacity (MW) and energy (MJ) for the boiler inventory and the foundational dataset.
- Parameters:
comparison (pandas.DataFrame)
write_fig (Bool, default=True)
compare_type (str; {'county', 'naics'})
- Return type:
None