dwind.scenarios#

Provides the scenario-specific mapping for varying financial and model configuration data.

Functions

config_cambium(scenario)

Loads the cambium configuration name based on scenario.

config_costs(scenario, year)

Loads the cost configuration based on the ATB analysis.

config_financial(scenario, year)

Loads the financial configuration based on the ATB analysis.

config_nem(scenario, year)

Provides NEM configuration based on scenario and year.

config_performance(scenario, year)

Loads the technology performance configurations.

dwind.scenarios.config_cambium(scenario)[source]#

Loads the cambium configuration name based on scenario.

Parameters:

scenario (dwind.config.Scenario) – Valid dwind.config.Scenario.

Returns:

Name of the Cambium scenario to use.

Return type:

str

dwind.scenarios.config_costs(scenario, year)[source]#

Loads the cost configuration based on the ATB analysis.

Parameters:
Returns:

Dictionary of ATB assumptions to be used for PySAM’s cost inputs.

Return type:

dict

dwind.scenarios.config_financial(scenario, year)[source]#

Loads the financial configuration based on the ATB analysis.

Parameters:
Returns:

Dictionary of ATB assumptions to be used for configuration PySAM.

Return type:

dict

dwind.scenarios.config_nem(scenario, year)[source]#

Provides NEM configuration based on scenario and year.

Parameters:
Returns:

Name of the NEM scenario file to use.

Return type:

str

dwind.scenarios.config_performance(scenario, year)[source]#

Loads the technology performance configurations.

Parameters:
Returns:

Performance data based on the scale of each technology.

Return type:

pd.DataFrame