h2integrate.converters.iron.martin_mine_perf_model#

Classes

MartinIronMinePerformanceComponent(**kwargs)

MartinIronMinePerformanceConfig(*, ...)

Configuration class for MartinIronMinePerformanceComponent.

class h2integrate.converters.iron.martin_mine_perf_model.MartinIronMinePerformanceConfig(*, max_ore_production_rate_tonnes_per_hr, taconite_pellet_type, mine)#

Configuration class for MartinIronMinePerformanceComponent.

Parameters:
  • max_ore_production_rate_tonnes_per_hr (float)

  • taconite_pellet_type (str)

  • mine (str)

taconite_pellet_type#

type of taconite pellets, options are "std" or "drg".

Type:

str

mine#

name of ore mine. Must be "Hibbing", "Northshore", "United", "Minorca" or "Tilden"

Type:

str

max_ore_production_rate_tonnes_per_hr#

capacity of the pellet plant in units of metric tonnes of pellets produced per hour.

Type:

float

max_ore_production_rate_tonnes_per_hr: float#
taconite_pellet_type: str#
mine: str#
class h2integrate.converters.iron.martin_mine_perf_model.MartinIronMinePerformanceComponent(**kwargs)#
initialize()#

Perform any one-time initialization run at instantiation.

setup()#

Declare inputs and outputs.

Available attributes:

name pathname comm options

format_coeff_df(coeff_df, mine)#
Update the coefficient dataframe such that values are adjusted to standard units

and units are compatible with OpenMDAO units. Also filter the dataframe to include only the data necessary for a given mine and pellet type.

Parameters:
  • coeff_df (pd.DataFrame) -- cost coefficient dataframe.

  • mine (str) -- name of mine that ore is extracted from.

Returns:

pd.DataFrame -- cost coefficient dataframe

compute(inputs, outputs)#

Compute outputs given inputs. The model is assumed to be in an unscaled state.

An inherited component may choose to either override this function or to define a compute_primal function.

Parameters:
  • inputs (Vector) -- Unscaled, dimensional input variables read via inputs[key].

  • outputs (Vector) -- Unscaled, dimensional output variables read via outputs[key].

  • discrete_inputs (dict-like or None) -- If not None, dict-like object containing discrete input values.

  • discrete_outputs (dict-like or None) -- If not None, dict-like object containing discrete output values.