Contains abstract and concrete classes for implementing clustering.
This module contains classes for managing clustering of location pairs.
The cluster center is used as reference location to figure out
transformer siting. In the process mapping between
cluster center and locations is also created.
Examples:
Get the clusters from given list of location pairs and plot it.
>>> from shift.clustering import KmeansClustering
>>> import numpy as np
>>> x_array = np.array([[1,2], [3,4], [5,6]])
>>> cluster = KmeansClustering(2)
>>> cluster.get_clusters(x_array)
>>> cluster.plot_clusters()
Clustering
Bases: ABC
Abstract interface for implementing clustering subclass
Source code in shift\clustering.py
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93 | class Clustering(ABC):
"""Abstract interface for implementing clustering subclass"""
@abstractmethod
def get_clusters(self, x_array: List[list]) -> dict:
"""Method for creating and returning clusters.
Subclass inhereting this class must implement this method and should
return the clusters in the following format.
```json
{"labels": [0,1,1], "centre": [(0,0), (2,2)]}
```
Returns:
dict: A dictionary containing cluster labels
and cluster centers
"""
pass
@abstractmethod
def plot_clusters(self) -> None:
"""Method to plot clusters
Raises:
EarlyMethodCallError: If this method is called before calling
`get_clusters` method.
"""
pass
|
get_clusters(x_array)
abstractmethod
Method for creating and returning clusters.
Subclass inhereting this class must implement this method and should
return the clusters in the following format.
{"labels": [0,1,1], "centre": [(0,0), (2,2)]}
Returns:
Name | Type |
Description |
dict |
dict
|
A dictionary containing cluster labels
and cluster centers |
Source code in shift\clustering.py
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83 | @abstractmethod
def get_clusters(self, x_array: List[list]) -> dict:
"""Method for creating and returning clusters.
Subclass inhereting this class must implement this method and should
return the clusters in the following format.
```json
{"labels": [0,1,1], "centre": [(0,0), (2,2)]}
```
Returns:
dict: A dictionary containing cluster labels
and cluster centers
"""
pass
|
plot_clusters()
abstractmethod
Method to plot clusters
Raises:
Source code in shift\clustering.py
85
86
87
88
89
90
91
92
93 | @abstractmethod
def plot_clusters(self) -> None:
"""Method to plot clusters
Raises:
EarlyMethodCallError: If this method is called before calling
`get_clusters` method.
"""
pass
|
KmeansClustering
Bases: Clustering
Class implementing Kmeans clustering.
Attributes:
Name |
Type |
Description |
num_of_clusters |
Union[str, int]
|
Number of clusters to be used |
cluster_centers |
List[Sequece]
|
List of cluster center |
labels |
list
|
Integer label for each location indicating which
cluster they belong to |
xarray |
List[Sequece]
|
List of location pairs for which
clustering is performed |
optimal_clusters |
int
|
Optimal number of clusters created if
num_of_clusters passed is optimal |
Source code in shift\clustering.py
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229 | class KmeansClustering(Clustering):
"""Class implementing Kmeans clustering.
Attributes:
num_of_clusters (Union[str, int]): Number of clusters to be used
cluster_centers (List[Sequece]): List of cluster center
labels (list): Integer label for each location indicating which
cluster they belong to
xarray (List[Sequece]): List of location pairs for which
clustering is performed
optimal_clusters (int): Optimal number of clusters created if
`num_of_clusters` passed is `optimal`
"""
def __init__(self, num_of_clusters: Union[str, int] = "optimal") -> None:
"""Constructor for `KmeansClustering` class.
Args:
num_of_clusters (Union[str, int]): Number of clusters to be used
Raises:
NumberOfClusterNotInRangeError: if `num_of_clusters` speecified is
less than MIN_NUM_CLUSTER constants module.
"""
self.num_of_clusters = num_of_clusters
if isinstance(self.num_of_clusters, int):
if self.num_of_clusters < MIN_NUM_CLUSTER:
raise NumberOfClusterNotInRangeError(self.num_of_clusters)
def plot_clusters(self):
"""Refer to the base class for details."""
if (
hasattr(self, "x_array")
and hasattr(self, "labels")
and hasattr(self, "cluster_centers")
):
plot_data = {"x": [], "y": [], "label": []}
for d, label in zip(self.x_array, self.labels):
plot_data["x"].append(d[0])
plot_data["y"].append(d[1])
plot_data["label"].append(label)
fig = px.scatter(
pd.DataFrame(plot_data), x="x", y="y", color="label"
)
fig.show()
else:
raise EarlyMethodCallError(
"Call get_clusters() method first before "
+ "calling plot clusters method!"
)
def plot_scores(self):
"""Method for plotting scores
Note:
Only use this method if `num_of_clusters` passed is `optimal`.
Raises:
EarlyMethodCallError: If called before calling
`get_clusters` method.
"""
if hasattr(self, "sil_scores"):
plot_data = {
"Number of clusters": [x[0] for x in self.sil_scores],
"Silhouette Value": [x[1] for x in self.sil_scores],
}
fig = px.line(
pd.DataFrame(plot_data),
x="Number of clusters",
y="Silhouette Value",
)
fig.show()
else:
raise EarlyMethodCallError(
"Call get_clusters() method first before calling "
+ "plot scores method!"
)
def get_clusters(self, x_array: list) -> dict:
"""Refer to the base class for details.
Raises:
WrongInputUsed: If the number of clusters passed is invalid.
"""
self.x_array = x_array
if isinstance(self.num_of_clusters, int):
kmeans = KMeans(
n_clusters=self.num_of_clusters, random_state=0
).fit(x_array)
else:
if self.num_of_clusters == "optimal":
# Let's try to find optimal number of clusters
self.sil_scores = []
for k in range(2, MAX_KMEANS_LOOP):
kmeans = KMeans(n_clusters=k).fit(x_array)
labels = kmeans.labels_
self.sil_scores.append(
(
k,
silhouette_score(
x_array, labels, metric="euclidean"
),
)
)
# Break the loop if Silhouette score starts to decrease
if k > 2:
if (
self.sil_scores[k - 2][1]
< self.sil_scores[k - 3][1]
):
break
if k == MAX_KMEANS_LOOP - 1:
raise MaxLoopReachedForKmeans()
kmeans = KMeans(n_clusters=k - 1, random_state=0).fit(x_array)
self.optimal_clusters = k - 1
else:
raise WrongInputUsed(
"For now number of clusters can be either integer "
+ "number or 'optimal'!"
+ f"You provided {self.num_of_clusters}"
)
self.labels = kmeans.labels_
self.cluster_centers = kmeans.cluster_centers_
return {"labels": self.labels, "centre": self.cluster_centers}
|
__init__(num_of_clusters='optimal')
Constructor for KmeansClustering
class.
Parameters:
Name |
Type |
Description |
Default |
num_of_clusters |
Union[str, int]
|
Number of clusters to be used |
'optimal'
|
Raises:
Source code in shift\clustering.py
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124 | def __init__(self, num_of_clusters: Union[str, int] = "optimal") -> None:
"""Constructor for `KmeansClustering` class.
Args:
num_of_clusters (Union[str, int]): Number of clusters to be used
Raises:
NumberOfClusterNotInRangeError: if `num_of_clusters` speecified is
less than MIN_NUM_CLUSTER constants module.
"""
self.num_of_clusters = num_of_clusters
if isinstance(self.num_of_clusters, int):
if self.num_of_clusters < MIN_NUM_CLUSTER:
raise NumberOfClusterNotInRangeError(self.num_of_clusters)
|
get_clusters(x_array)
Refer to the base class for details.
Raises:
Type |
Description |
WrongInputUsed
|
If the number of clusters passed is invalid. |
Source code in shift\clustering.py
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229 | def get_clusters(self, x_array: list) -> dict:
"""Refer to the base class for details.
Raises:
WrongInputUsed: If the number of clusters passed is invalid.
"""
self.x_array = x_array
if isinstance(self.num_of_clusters, int):
kmeans = KMeans(
n_clusters=self.num_of_clusters, random_state=0
).fit(x_array)
else:
if self.num_of_clusters == "optimal":
# Let's try to find optimal number of clusters
self.sil_scores = []
for k in range(2, MAX_KMEANS_LOOP):
kmeans = KMeans(n_clusters=k).fit(x_array)
labels = kmeans.labels_
self.sil_scores.append(
(
k,
silhouette_score(
x_array, labels, metric="euclidean"
),
)
)
# Break the loop if Silhouette score starts to decrease
if k > 2:
if (
self.sil_scores[k - 2][1]
< self.sil_scores[k - 3][1]
):
break
if k == MAX_KMEANS_LOOP - 1:
raise MaxLoopReachedForKmeans()
kmeans = KMeans(n_clusters=k - 1, random_state=0).fit(x_array)
self.optimal_clusters = k - 1
else:
raise WrongInputUsed(
"For now number of clusters can be either integer "
+ "number or 'optimal'!"
+ f"You provided {self.num_of_clusters}"
)
self.labels = kmeans.labels_
self.cluster_centers = kmeans.cluster_centers_
return {"labels": self.labels, "centre": self.cluster_centers}
|
plot_clusters()
Refer to the base class for details.
Source code in shift\clustering.py
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148 | def plot_clusters(self):
"""Refer to the base class for details."""
if (
hasattr(self, "x_array")
and hasattr(self, "labels")
and hasattr(self, "cluster_centers")
):
plot_data = {"x": [], "y": [], "label": []}
for d, label in zip(self.x_array, self.labels):
plot_data["x"].append(d[0])
plot_data["y"].append(d[1])
plot_data["label"].append(label)
fig = px.scatter(
pd.DataFrame(plot_data), x="x", y="y", color="label"
)
fig.show()
else:
raise EarlyMethodCallError(
"Call get_clusters() method first before "
+ "calling plot clusters method!"
)
|
plot_scores()
Method for plotting scores
Note
Only use this method if num_of_clusters
passed is optimal
.
Raises:
Source code in shift\clustering.py
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177 | def plot_scores(self):
"""Method for plotting scores
Note:
Only use this method if `num_of_clusters` passed is `optimal`.
Raises:
EarlyMethodCallError: If called before calling
`get_clusters` method.
"""
if hasattr(self, "sil_scores"):
plot_data = {
"Number of clusters": [x[0] for x in self.sil_scores],
"Silhouette Value": [x[1] for x in self.sil_scores],
}
fig = px.line(
pd.DataFrame(plot_data),
x="Number of clusters",
y="Silhouette Value",
)
fig.show()
else:
raise EarlyMethodCallError(
"Call get_clusters() method first before calling "
+ "plot scores method!"
)
|