Source code for rex.multi_res_resource

# -*- coding: utf-8 -*-
"""
Classes to handle resource data at multiple spatiotemporal resolutions
"""
import pandas as pd
import os
import copy
import logging
from inspect import signature
from scipy.spatial import KDTree

from rex.resource import Resource
from rex.utilities.parse_keys import parse_keys
from rex.utilities.exceptions import ResourceRuntimeError

logger = logging.getLogger(__name__)


[docs] class MultiResolutionResource: """Multi-resolution resource handler. Uses two resource handlers for files at two different spatiotemporal resolutions, and then interpolates the lower resolution data to the higher resolution data on the fly. """ INTERPOLABLE_DSETS = ["temperature", "pressure", "windspeed", "winddirection"] VARIABLE_NAME = "height" VARIABLE_UNIT = "m" HR_ATTRS = ('meta', 'time_index', 'coordinates', 'lat_lon', 'data_version', 'global_attrs', 'get_meta_arr', 'shape') """Attributes that are always taken only from the high-res data handler""" def __init__(self, h5_hr, h5_lr, handler_class=Resource, handle_kwargs=None, nn_map=None, nn_d=None): """ Parameters ---------- h5_hr : str Filepath to high-resolution h5 resource file. h5_lr : str Filepath to low-resolution h5 resource file. handler_class : str rex Resource handler class (not initialized) to open both the high and low resolution h5 files (both files must be of the same resource handler class). handle_kwargs : dict, optional Dictionary of optional keyword arguments to initialize the handler_class for the h5_hr and h5_lr nn_map : np.ndarray Optional 1D array of nearest neighbor mappings. This will be created if not provided. This is created by making a kdtree of the lr_res coords and then querying with the hr_res coords. As an example, nn_map[10] will return the lr_res index corresponding to gid 10 from the hr_res data nn_d : np.ndarray Optional 1D array of nearest neighbor distances. This will be created if not provided. This is created by making a kdtree of the lr_res coords and then querying with the hr_res coords. As an example, nn_map[10] will return the distance between hr_res gid=10 and the corresponding lr_res site """ if handle_kwargs is None: handle_kwargs = {} self._h5_hr = h5_hr self._h5_lr = h5_lr self._hr_res = handler_class(h5_hr, **handle_kwargs) self._lr_res = handler_class(h5_lr, **handle_kwargs) self._nn_map = nn_map self._nn_d = nn_d if self._nn_map is None: self._nn_d, self._nn_map = self.make_nn_map(self._hr_res, self._lr_res) self._interpolation_variable = self._hr_res._parse_interp_var( self.datasets) self._interpolation_variable.update(self._hr_res._parse_interp_var( self.datasets)) prop_name = "{}s".format(self.VARIABLE_NAME) setattr(self, prop_name, self._interpolation_variable)
[docs] @staticmethod def make_nn_map(hr_res, lr_res): """Make the low-res-to-high-res resource nearest neighbor mapping Parameters ---------- hr_res : Resource | MultiFileResource | MultiYearResource rex resource handler for the high-resolution data. All retrieval gid's are based on this dataset, and the lr_res data is mapped to this. lr_res : Resource | MultiFileResource | MultiYearResource rex resource handler for the low-resolution data. The data from this handler is mapped to the hr_res data. Returns ------- nn_d : np.ndarray 1D array of nearest neighbor distances. This is created by making a kdtree of the lr_res coords and then querying with the hr_res coords. As an example, nn_map[10] will return the distance between hr_res gid=10 and the corresponding lr_res site nn_map : np.ndarray 1D array of nearest neighbor mappings. This is created by making a kdtree of the lr_res coords and then querying with the hr_res coords. As an example, nn_map[10] will return the lr_res index corresponding to gid 10 from the hr_res data """ tree = KDTree(lr_res.coordinates) nn_d, nn_map = tree.query(hr_res.coordinates) return nn_d, nn_map
[docs] def map_ds_slice(self, ds_slice): """Map the requested dataset slice from high-res spatial indices to low-res spatial indices Parameters ---------- ds_slice : tuple Tuple where each entry is a slice or list index argument for the respective axis, e.g. (slice(None), [0, 2]) retrieves the full axis=0 and indices 0 and 2 from axis=1. Returns ------- ds_slice : tuple Tuple where each entry is a slice or list index argument for the respective axis, e.g. (slice(None), [0, 2]) retrieves the full axis=0 and indices 0 and 2 from axis=1. The returned value is now low-res spatial indices using simple nearest neighbor. """ if len(ds_slice) == 1: ds_slice = ds_slice + (slice(None), ) elif len(ds_slice) > 2: msg = 'Cannot handle ds_slice > 2D' logger.error(msg) raise ResourceRuntimeError(msg) t_slice, s_slice = ds_slice s_slice = self._nn_map[s_slice] return (t_slice, s_slice)
[docs] def time_interp(self, arr): """Perform temporal interpolation on the low-res data to match the high-res data. Parameters ---------- arr : np.ndarray 2D array with shape (time, sites) where time corresponds to the low-resolution resource. Returns ------- arr : np.ndarray 2D array with shape (time, sites) where the time axis has been linearly interpolated to the high-resolution time index. """ ndim = len(arr.shape) arr = pd.DataFrame(arr, index=self._lr_res.time_index) arr = arr.reindex(self._hr_res.time_index) arr = arr.interpolate('linear').ffill().bfill().values if ndim == 1 and len(arr.shape) == 2: arr = arr.flatten() return arr
[docs] def close(self): """Close active file handlers.""" self._hr_res.close() self._lr_res.close()
def __repr__(self): msg = "{} for {}".format(self.__class__.__name__, self.h5_file) return msg def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() if type is not None: raise def __len__(self): return len(self._hr_res) def __getitem__(self, keys): ds, ds_slice = parse_keys(keys) _, ds_name = os.path.split(ds) base_name, _ = self._parse_name(ds_name) hr_heights = getattr(self._hr_res, '_interpolation_variable', {}) lr_heights = getattr(self._lr_res, '_interpolation_variable', {}) hr_heights = hr_heights.get(base_name, []) lr_heights = lr_heights.get(base_name, []) if ds_name.startswith('time_index'): out = self._hr_res._get_time_index(ds, ds_slice) elif ds_name.startswith('meta'): out = self._hr_res._get_meta(ds, ds_slice) elif ds_name.startswith('coordinates'): out = self._hr_res._get_coords(ds, ds_slice) elif 'SAM' in ds_name: msg = ('SAM dataframe retrieval not implemented for ' 'MultiResolutionResource, use ' 'MultiResolutionResource.preload_SAM() instead.') logger.error(msg) raise NotImplementedError(msg) elif ds_name in self._hr_res.dsets or len(hr_heights) > 0: out = self._hr_res._get_ds(ds, ds_slice) elif ds_name in self._lr_res.dsets or len(lr_heights) > 0: ds_slice = self.map_ds_slice(ds_slice) out = self._lr_res._get_ds(ds, ds_slice) out = self.time_interp(out) else: msg = ('Could not find data for ds_name = {}. Available dsets in ' 'hr_file ({}): {}. Available dsets in lr_file ({}): {}.' .format(ds_name, self._h5_hr, self._hr_res.dsets, self._h5_lr, self._lr_res.dsets)) logger.error(msg) raise RuntimeError(msg) return out def __iter__(self): return iter(self.datasets) def __contains__(self, dset): return dset in self.datasets def __getattr__(self, attr): if attr in dir(self): return getattr(self, attr) if attr in self.HR_ATTRS: return getattr(self._hr_res, attr) else: try: hr_attr = getattr(self._hr_res, attr) lr_attr = getattr(self._lr_res, attr) if hasattr(hr_attr, '__call__'): return hr_attr elif isinstance(hr_attr, list) and isinstance(lr_attr, list): return list(set(hr_attr + lr_attr)) elif isinstance(hr_attr, tuple) and isinstance(lr_attr, tuple): return tuple(set(hr_attr + lr_attr)) elif isinstance(hr_attr, dict) and isinstance(lr_attr, dict): out = copy.deepcopy(lr_attr) out.update(hr_attr) return out except Exception as e: msg = ('Could not retrieve attribute "{}" from ' 'MultiResolutionResource handler, the hr and lr ' 'handler attributes could not be combined: {} {}' .format(attr, hr_attr, lr_attr)) logger.error(msg) raise AttributeError(msg) from e
[docs] @classmethod def preload_SAM(cls, h5_hr, h5_lr, sites, *args, handler_class=Resource, nn_map=None, nn_d=None, **kwargs): """Pre-load resource data in a SAM resource handler for PySAM / reV run Parameters ---------- h5_hr : str Filepath to high-resolution h5 resource file. h5_lr : str Filepath to low-resolution h5 resource file. sites : list List of sites to be provided to SAM (sites is synonymous with gids aka spatial indices) *args : list Additional arguments required by the resource-specific data handler preload_SAM() method (e.g. "hub_heights" is required by WindResource handlers and can be provided here). handler_class : str rex Resource handler class (not initialized) to open both the high and low resolution h5 files (both files must be of the same resource handler class). nn_map : np.ndarray Optional 1D array of nearest neighbor mappings. This will be created if not provided. This is created by making a kdtree of the lr_res coords and then querying with the hr_res coords. As an example, nn_map[10] will return the lr_res index corresponding to gid 10 from the hr_res data nn_d : np.ndarray Optional 1D array of nearest neighbor distances. This will be created if not provided. This is created by making a kdtree of the lr_res coords and then querying with the hr_res coords. As an example, nn_map[10] will return the distance between hr_res gid=10 and the corresponding lr_res site **kwargs : dict Additional arguments required to either initialize the resource-specific data handler or call the resource-specific preload_SAM() method (e.g. "hub_heights" is required by WindResource.preload_SAM() method and can be provided here in addition to optional args like "icing" or "precip_rate"). Returns ------- SAM_res : SAMResource Instance of SAMResource pre-loaded with high-resolution resource for sites in project_points """ sig = signature(handler_class) handle_kwargs = {k: v for k, v in kwargs.items() if k in sig.parameters} cls_kwargs = dict(nn_map=nn_map, nn_d=nn_d, handler_class=handler_class, handle_kwargs=handle_kwargs) with cls(h5_hr, h5_lr, **cls_kwargs) as mrr: sig = signature(mrr._hr_res._preload_SAM) preload_kwargs = {k: v for k, v in kwargs.items() if k in sig.parameters} SAM_res = mrr._hr_res._preload_SAM(mrr, sites, *args, **preload_kwargs) return SAM_res