fied.geocoder package

Submodules

fied.geocoder.geo_tools module

fix_county_fips(df)[source]

County FIPS should be strings. Use geoID or censusBlock to replace existing county FIPS.

Parameters:

df (pandas.DataFrame) – DataFrame with either geoID or censusBlock in the columns

Returns:

df – DataFrame with updated countyFIPS

Return type:

pandas.DataFrame

find_missing_congress(df)[source]

” Update Congressional Districts to 118th Congress, for 2020. Update the FRS column legislativeDistrictNumber

fcc_block_api(lat_lon, census_year=2020)[source]

Call FCC’s Area API (https://geo.fcc.gov/api/census/) with lat, lon coordinates to return the corresponding Census Block.

Parameters:
  • lat_lon (list) – List of lat, lon coordinates

  • census_year (default is 2020)

Returns:

block – Census block. Returns None if there is no corresponding block (e.g., offshore oil platform)

Return type:

int or None

get_blocks_parallelized(df)[source]

Paraellization for FCC API. Final industrial data has ~360,000 unique lat, lon coordinates.

Parameters:

df (pandas.DataFrame) – Final foundational energy dataframe

Returns:

df – Final foundational energy dataframe with new colum for censusBlock

Return type:

pandas.DataFrame

fied.geocoder.geopandas_tools module

class FiedGIS[source]

Bases: object

static get_shapefile(year=None, state_fips=None, ftype=None)[source]

Get Census block group TIGER/Line shapefile for specified year and state FIPS code, or get USGS HUC geodatabase.

Parameters:
  • year (int) – Year of shapefile

  • state_fips (str or None) – State FIPS of shapefile. Not necessary for congressional district.

  • ftype (str, {'BG', 'CD', 'HUC'}) – Type of file to return. ‘BG’ == census block groups; ‘CD’ == congressional districts; ‘HUC’ == hydrolic unit code.

Returns:

gf – gf

Return type:

geopandas.DataFrame

static merge_coordinates_geom(fied_state, gf, ftype=None, data_source='fied')[source]

” First creates POINT geometry from facility coordinates. Then locates the points within specific geographic identifier type. Finally, merges geographic identifier with facility DataFrame.

Parameters:
  • fied_state (pandas.DataFrame) – DataFrame of foundational data by state

  • gf (geopandas) – Shapefile containing Census tracts

  • ftype (str, {'BG', 'CD', 'COUNTY', 'HUC'}) – Type of file to return. ‘BG’ == census block groups; ‘CD’ == congressional districts; ‘COUNTY’ == county FIPS; ‘HUC’ == hydrolic unit code.

  • data_source (str, {'fied', 'ghgrp'}) – Source of data with missing geographic identifiers.

Returns:

matched_geo – Geographic identifiers matched to facility coordinates.

Return type:

pandas.DataFrame

merge_geom(df, year=None, ftypes=['BG', 'CD'], data_source='fied')[source]

Pulls together methods for creating Geopandas DataFrames from geographic information files and merges geographic identifiers with the foundational data set.

Parameters:
  • df (pandas.DataFrame) – DataFrame with missing geographic data.

  • year (int) – Year of foundational energy data.

  • ftype (list; default=['BG', 'CD']) – Type of missing geo data to fill in.

  • data_source (str, {'fied', 'ghgrp'}) – Source of missing geographic data. Used to specify columns in dataframe to use.

Returns:

new_fied – New foundational dataset with new columns for geographic identifiers.

Return type:

pandas.DataFrame

Module contents