tests package
Subpackages
Submodules
tests.gosac_benchmark module
- class tests.gosac_benchmark.Problem(objf: Callable[[ndarray], ndarray], gfun: Callable[[ndarray], ndarray], iindex: tuple[int, ...], bounds: tuple[tuple[float, float], ...], xmin: tuple[float, ...] | None = None, fmin: float | None = None) None
Bases:
object
A class to represent a problem for the GOSAC benchmark.
Attributes
- objfCallable[[np.ndarray], np.ndarray]
The objective function. Receives a 2D array of shape (n, dim) and returns a 1D array of shape (n,).
- gfunCallable[[np.ndarray], np.ndarray]
The constraint function. Receives a 2D array of shape (n, dim) and returns a 2D array of shape (n, gdim).
- iindextuple[int, …]
The indices of the integer variables.
- boundstuple[tuple[float, float], …]
The bounds of the variables.
- xmintuple[float, …] | None
The known minimum of the objective function. If None, the minimum is unknown.
- fminfloat | None
The value of the objective function at the known minimum. If None, the minimum is unknown.
-
bounds:
tuple
[tuple
[float
,float
],...
]
-
fmin:
Optional
[float
] = None
-
gfun:
Callable
[[ndarray
],ndarray
]
-
iindex:
tuple
[int
,...
]
-
objf:
Callable
[[ndarray
],ndarray
]
-
xmin:
Optional
[tuple
[float
,...
]] = None
- tests.gosac_benchmark.fRana(x: ndarray) ndarray
- Return type:
ndarray
- tests.gosac_benchmark.fWeierstrass(x: ndarray) ndarray
- Return type:
ndarray
tests.test_acquisition module
Test the acquisition functions.
- tests.test_acquisition.test_expected_improvement()
tests.test_gosac_bench module
tests.test_gp module
Test the Gaussian Process model and helpers.
- tests.test_gp.test_xtrain(n: int, copy_X_train: bool)
tests.test_optimize module
Test the optimization routines.
- tests.test_optimize.test_batched_sampling()
- tests.test_optimize.test_callback(minimize)
- tests.test_optimize.test_multiple_calls(minimize)
tests.test_rbf module
Test the RBF model.
- class tests.test_rbf.TestRbfModel
Bases:
object
- rbf_model = <blackboxopt.rbf.RbfModel object>
- test_dim()
- test_phi()
- tests.test_rbf.test_median_lpf()
tests.test_sampling module
Test the sampling functions.
- tests.test_sampling.test_iindex_mitchel91_sampler(boundx, n0: int)
- tests.test_sampling.test_iindex_sampler(boundx, strategy: SamplingStrategy)
- tests.test_sampling.test_mitchel91_sampler(dim: int, n0: int)
- tests.test_sampling.test_normal_sampler(dim: int, strategy: SamplingStrategy)
- tests.test_sampling.test_sampler(dim: int, strategy: SamplingStrategy)
- tests.test_sampling.test_slhd(boundx)
tests.test_vlse_bench module
Test functions from the VLSE benchmark.
- tests.test_vlse_bench.run_optimizer(func: str, nArgs: int, maxEval: int, algo, nRuns: int, *, bounds=None, disp: bool = False) list[OptimizeResult]
- Return type:
list
[OptimizeResult
]
- tests.test_vlse_bench.test_API(func: str)
Test function func can be called from the R API.
Parameters
- funcstr
Name of the function to be tested.
- tests.test_vlse_bench.test_bayesianopt(func: str) None
- Return type:
None
- tests.test_vlse_bench.test_cptv(func: str) None
- Return type:
None