

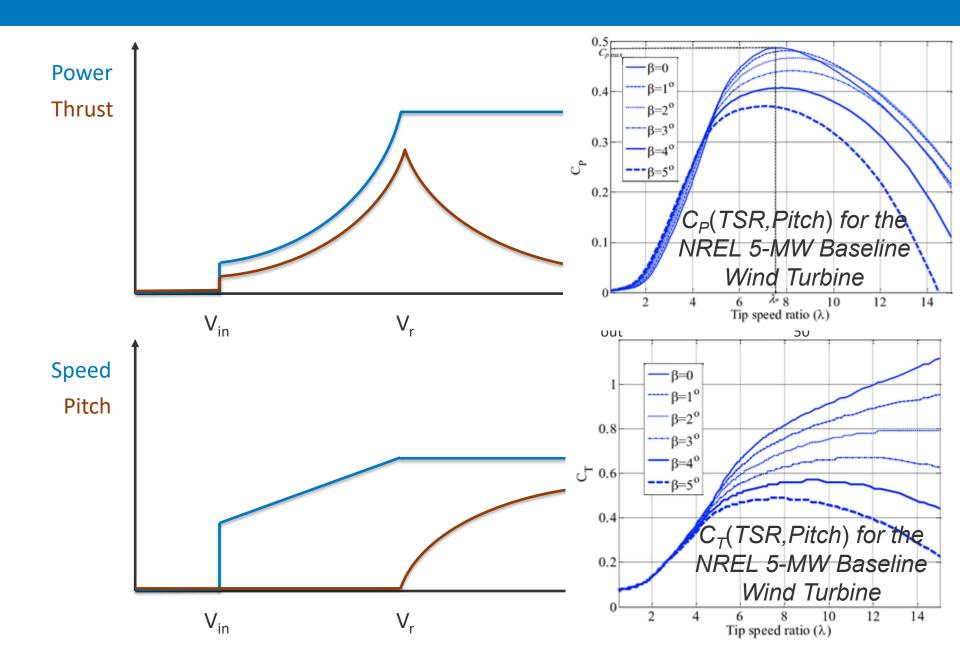
Photo by Josh Bauer, NREL 61725

FAST.Farm: An Open-Source Tool for Physics-Based Engineering Modeling and Loads Analysis of Wind Turbines in Wind Farms

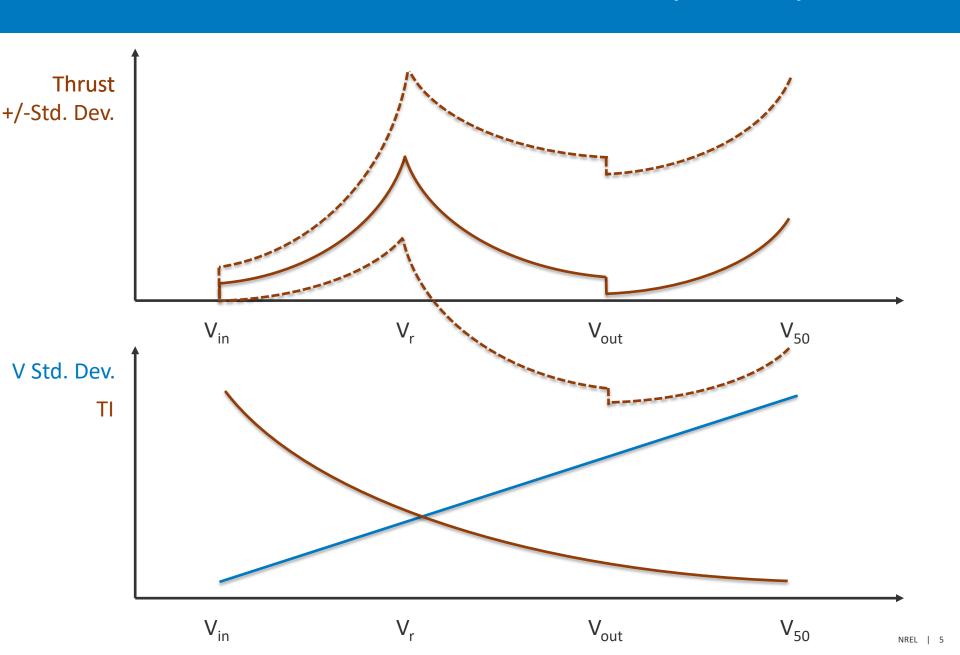
Jason Jonkman, Ph.D. - NREL

NAWEA / WindTech 2025 October 13, 2025 UT Dallas (Davidson-Gundy Alumni Center) – Dallas, TX (USA)

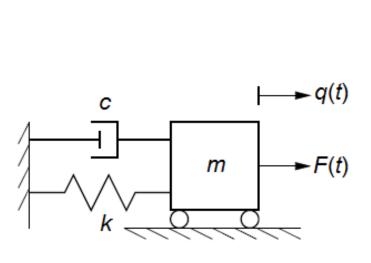
Workshop Materials at: https://tinyurl.com/yc3r3sd6

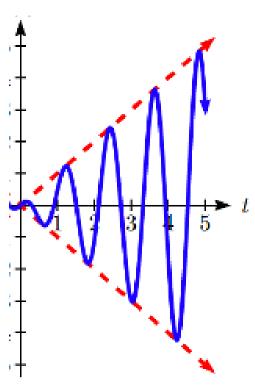

Agenda

- 1 Fundamental Concepts
- 2 Overview of OpenFAST and FAST.Farm
- 3 FAST.Farm Framework and Modules
- 4 Example 0
- 5 FAST.Farm Input File and Modeling Guidance
- 6 Examples 1-3
- 7 Recent FAST.Farm V&V and Applications
- 8 Outlook

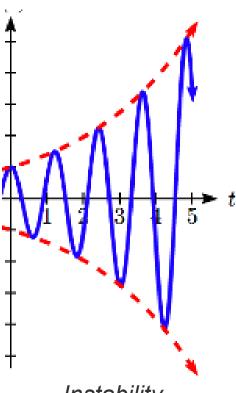

Break

Fundamental Concepts


Mean and Standard Deviation of Wind, Power, Thrust

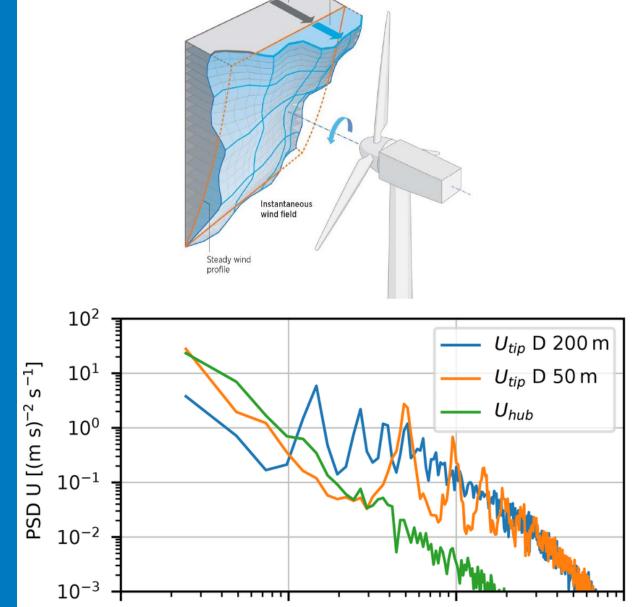

Mean and Standard Deviation of Wind, Power, Thrust

Mass-Spring-Damper: Resonance Versus Instability



$$m\ddot{q} + c\dot{q} + kq = F$$

Resonance (with Small Damping)


$$\omega_n = \sqrt{rac{k}{m}}$$

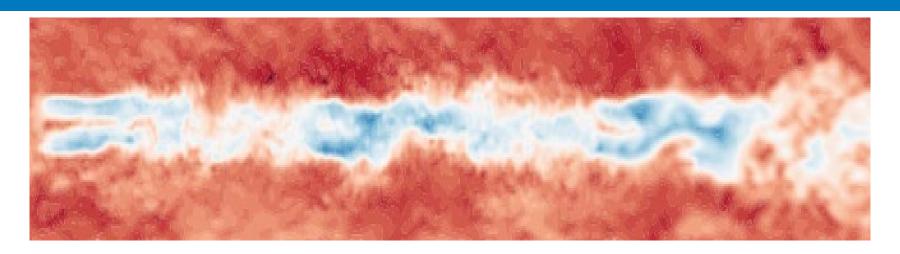
Instability

Rotational Sampling of Turbulence

- Rotor rotation samples turbulent inflow
- Results in *n*-per-rev (*n*P)
 excitation of the 3 bladed wind turbine:
 - Blades (rotating frame):OP, 1P, 2P, 3P, etc.
 - Drivetrain, nacelle, support structure (fixed frame): 0P, 3P, 6P, etc.
- Lower frequencies for larger turbines

 10^{-1}

 10^{0}

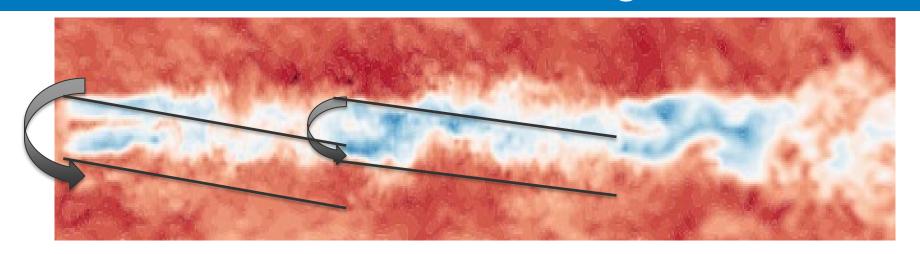

Frequency [Hz]

 10^{1}

 10^{-2}

Turbulence

Power and Thrust for Flow Down a Row Below Rated

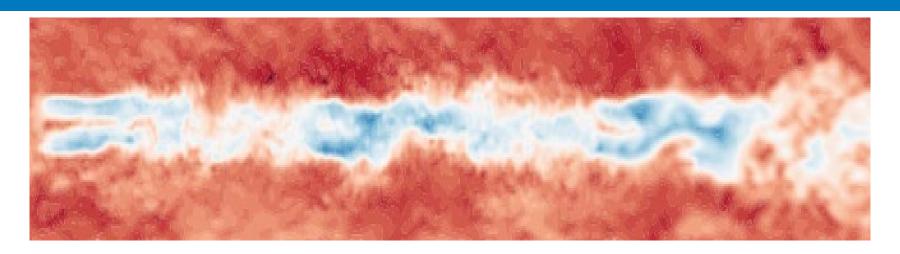


Mean Power and Range Without Wake Steering Below Rated

T1 T2 T3 T4 T5

Mean Thrust and Range Without Wake Steering Below Rated

Power and Thrust for Flow Down a Row Below Rated with Wake Steering

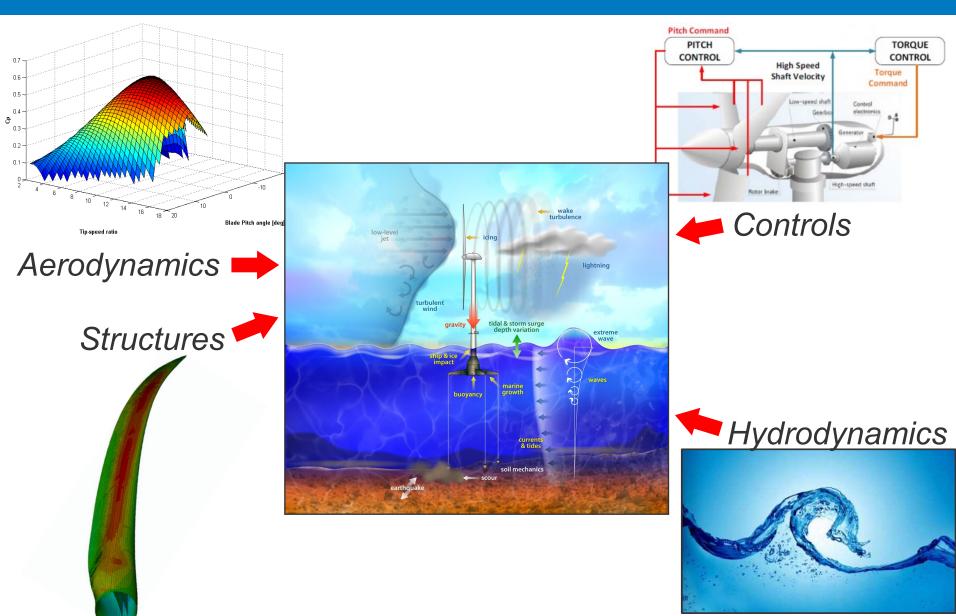


Mean Power and Range With Wake Steering Below Rated

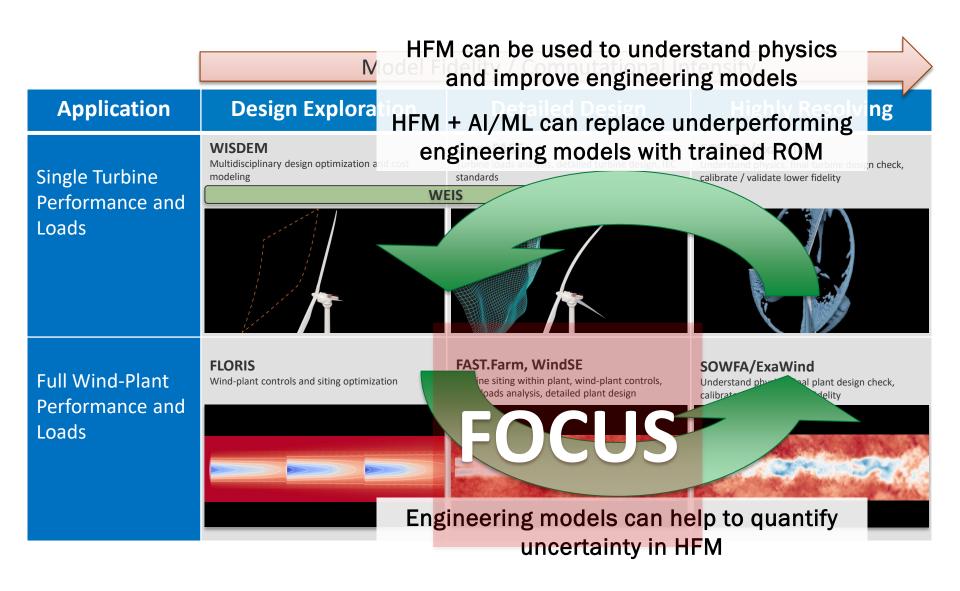
T1 T2 T3 T4 T5

Mean Thrust and Range With Wake Steering Below Rated

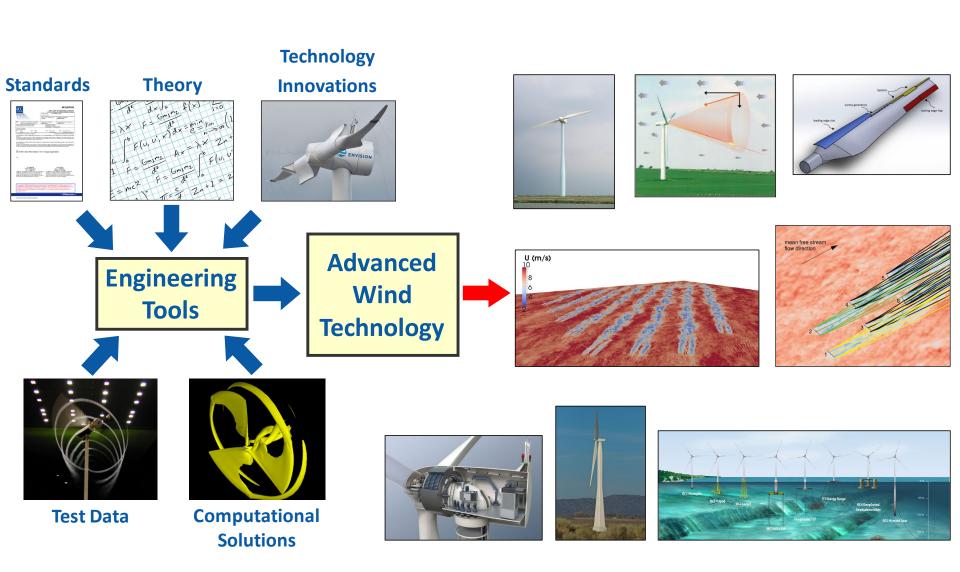
Power and Thrust for Flow Down a Row Above Rated


Mean Power and Range Without Wake Steering Above Rated

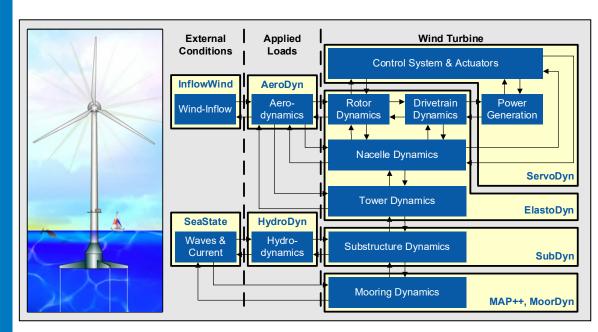
T1 T2 T3 T4 T5

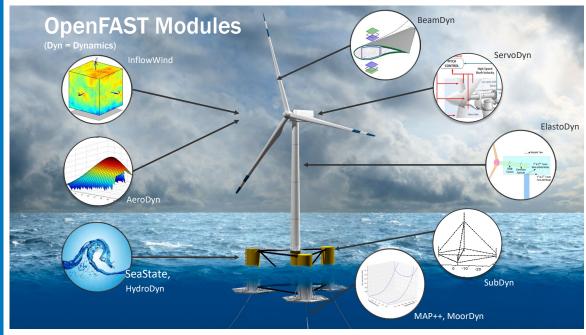

Mean Thrust and Range Without Wake Steering Above Rated

Overview of OpenFAST and FAST.Farm


Coupling Between Fluids, Structures, and Controls

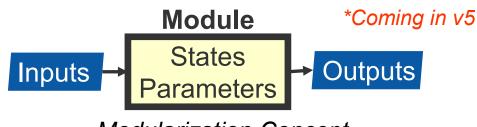
NREL/DOE Open-Source Modeling Tool Overview

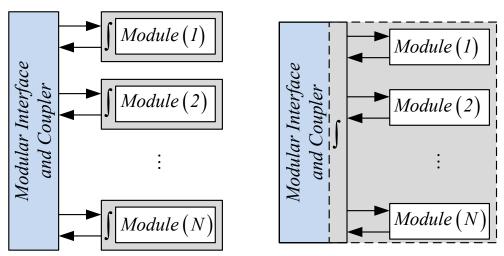

Engineering Tools Enable Technology Advancement



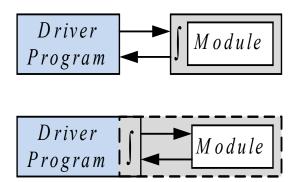
OpenFAST Overview

OpenFAST provides state-ofthe-art coupled aero-hydroservo-elastic simulation of individual land-based, fixedbottom offshore, and floating offshore wind and MHK turbines with the ability to:


- Run large numbers of <u>nonlinear</u> <u>time-domain simulations</u> in real time to enable standardsbased <u>loads analysis</u> for predicting wind system <u>ultimate and fatigue loads</u>
- <u>Linearize</u> the underlying nonlinear model about an operating point to <u>understand</u> <u>the wind system response</u> and enable <u>modal analysis</u>; <u>controls</u> <u>design</u>; and <u>aero-elastic</u> <u>instability</u> studies

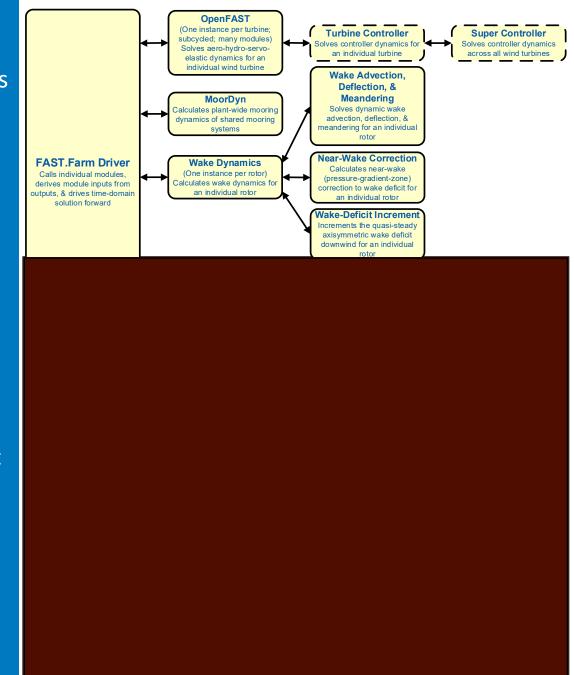


OpenFAST Modular Framework

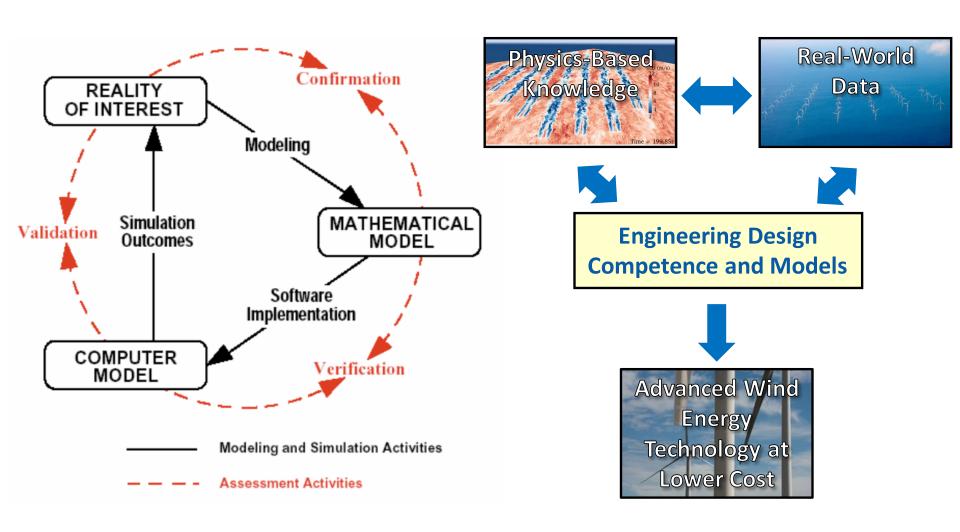

- Module-independent inputs, outputs, states, and parameters
- States in continuous-time, discrete-time, constraint, and "other" form
- Loose and tight* coupling
- Independent time and spatial discretizations
- Time marching, operating-point determination, and linearization
- Data encapsulation and dynamic allocation
- Visualization capability
- Checkpoint/restart capability

Modularization Concept

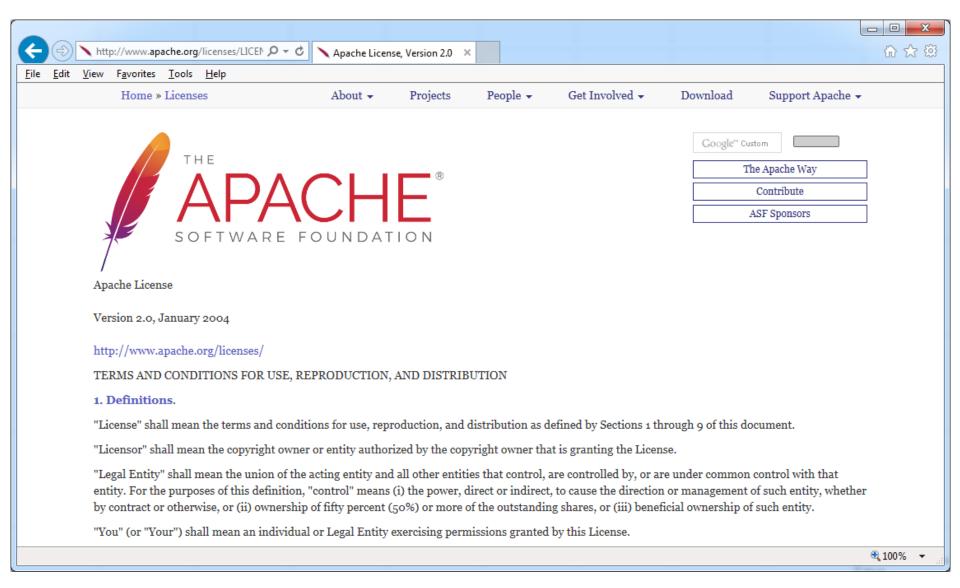
Loose- (Left) & Tight- (Right) Coupling



Uncoupled Solution of a Module Intended for Loose (Top) and Tight (Bottom) Coupling

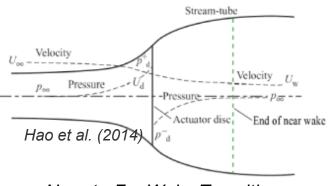

FAST.Farm Overview

FAST.Farm extends the capabilities of OpenFAST to provide physics-based engineering simulation of multi-turbine land-based, fixed-bottom offshore, and floating offshore wind farms with the ability to:

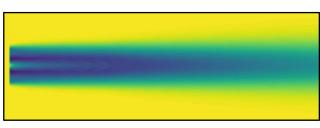

- Simulate each wind turbine in the farm with an OpenFAST model
- <u>Capture relevant physics</u> for prediction of wind <u>farm power</u> <u>performance</u> and <u>structural loads</u>, including wind farm-wide ambient wind, super controller, and wake advection, meandering, and merging
- Maintain computational efficiency through parallelization to enable loads analysis for predicting the <u>ultimate and fatigue loads</u> of each wind turbine in the farm

Model Verification and Validation Is Important to **Understand Accuracy and Applicability**

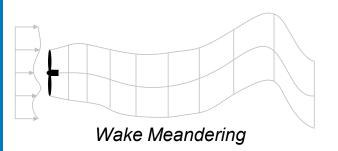
Officially Released Under Apache 2.0 Open-Source License

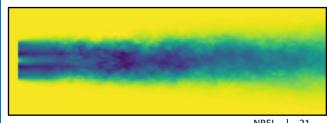

FAST.Farm Framework and Modules

Dynamic Wake Meandering (DWM)


Principles

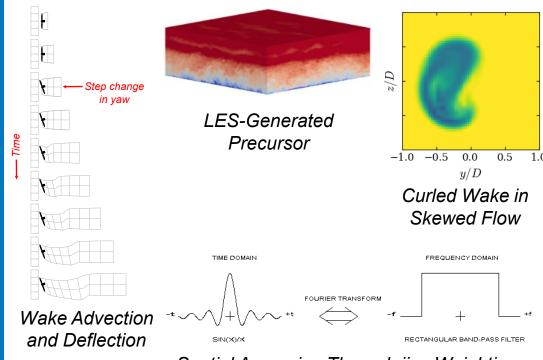
 FAST.Farm relies on DWM principles, but avoids many limitations of past implementations

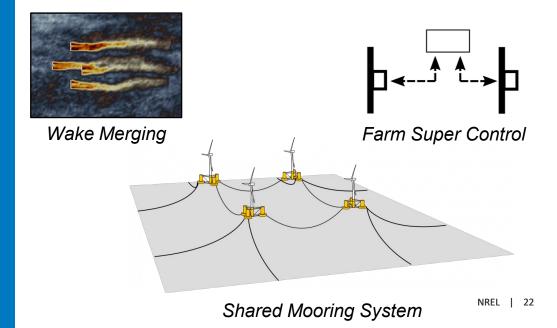

- Wake-deficit evolution:
 - Flow speed reduction behind rotor, recovering to freestream
 - Modeled in meandering frame of reference by solving continuity and momentum (Navier Stokes) equations under simplified conditions (steady state, near-wake correction, eddy-viscosity, axisymmetric (polar) or curled formulation)
- Wake meandering:
 - Large scale movement of wake deficit (deficit transferred to global frame of reference)
 - Modeled as passive tracer transported from large turbulent eddies
- Wake-added turbulence:
 - Additional turbulence generated from wake shear layer
 - Modeled by scaling isotropic turbulence by the wake deficit



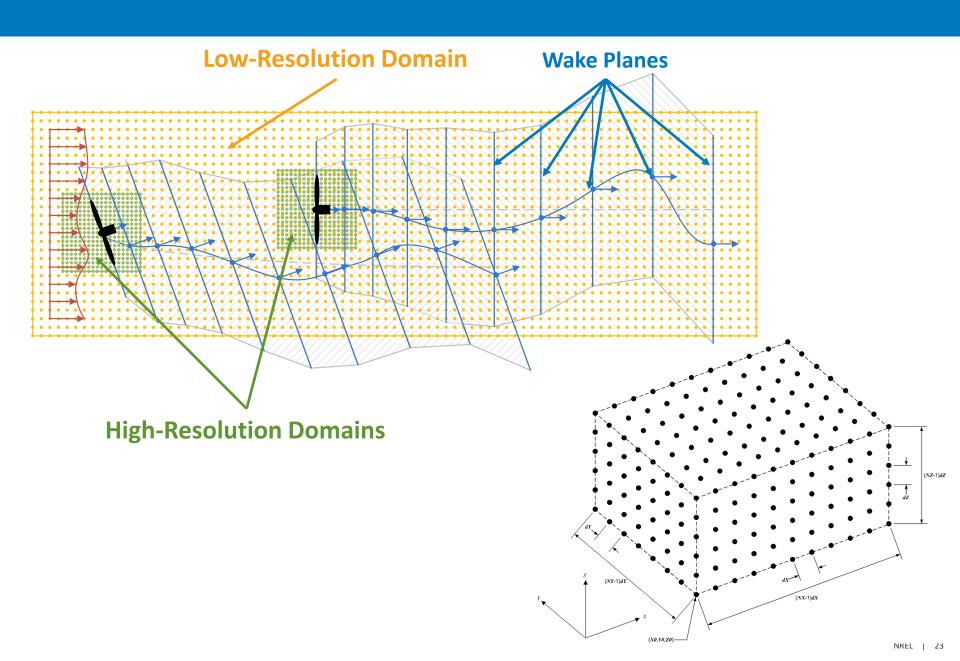
Near-to-Far Wake Transition

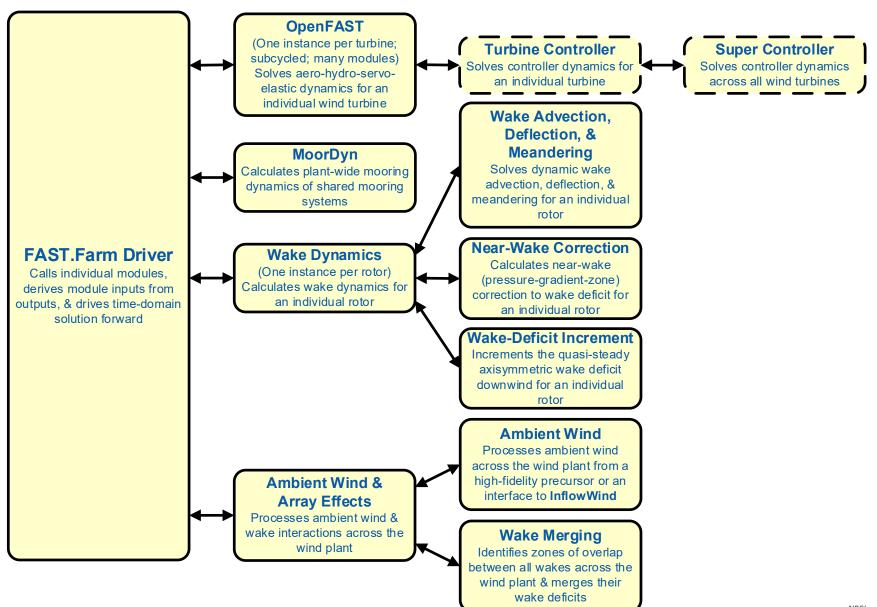
Wake-Deficit Evolution



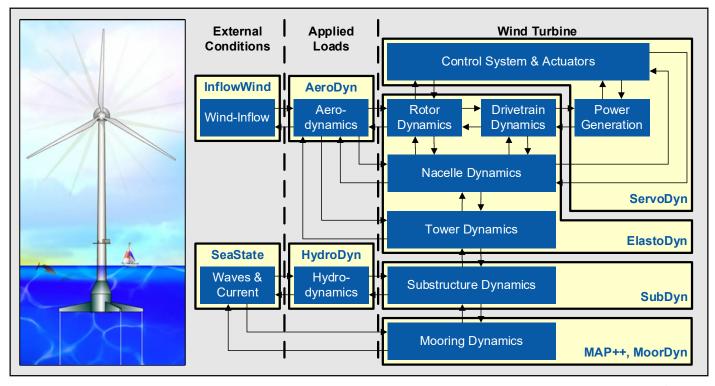

Wake-Added Turbulence

FAST.Farm Innovations

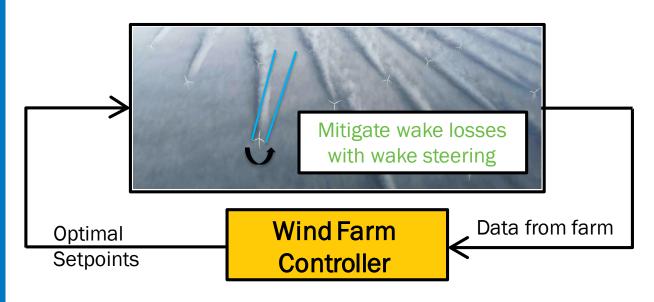

- Modular, following requirements of OpenFAST modularization framework
- Use of LES-generated or synthetic precursor for ambient wind
- Improvement of wake advection, deflection, and merging compared to past DWM-implementations
- Farm-wide wake-added turbulence
- Optional inclusion of wind-farmwide super controller
- Optional inclusion of shared mooring systems
- Ability to solve entire wind farm in serial or parallel
- Calibration of wake-related model parameters against high-fidelity simulations

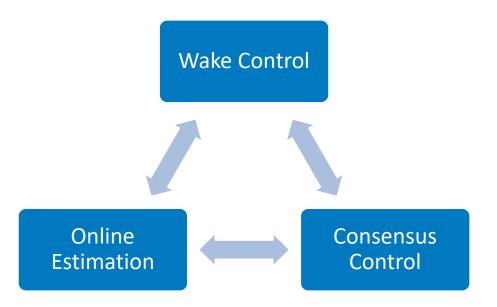

Spatial Averaging Through jinc Weighting

FAST.Farm Wake Planes and Domains

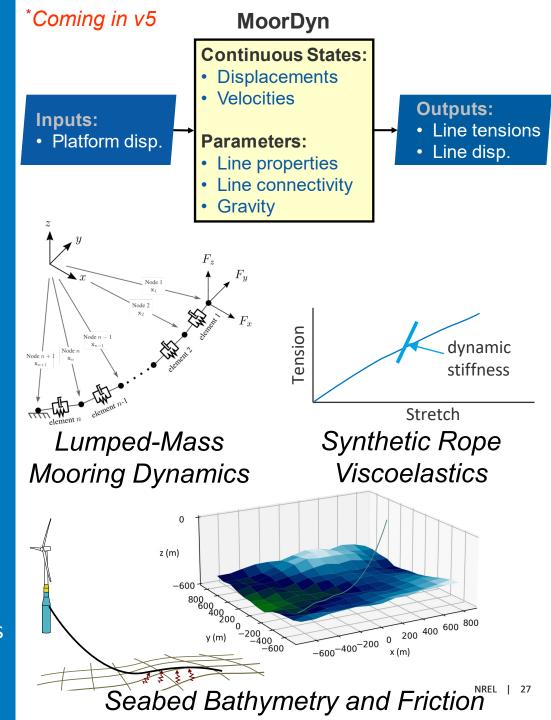

FAST.Farm Modules

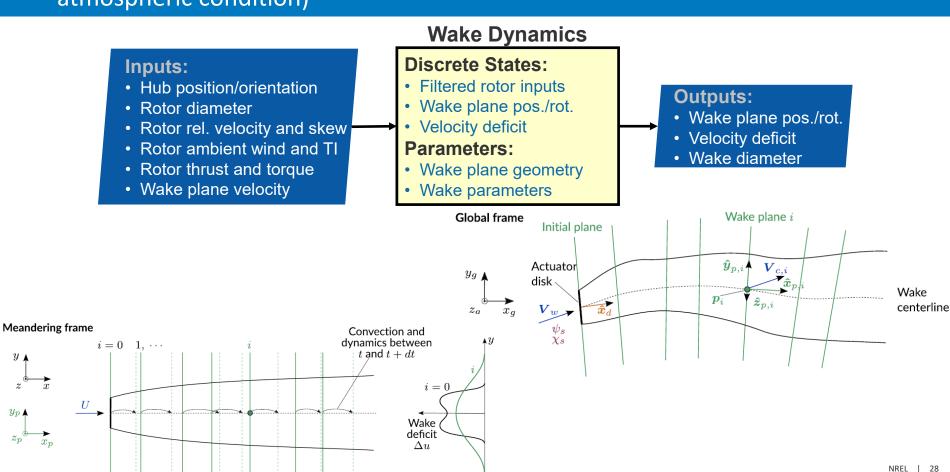
OpenFAST


- Wrapper for
 OpenFAST, which
 solves aero hydro-servo elastics for an
 individual wind
 turbine
- One instance per turbine:
 - Number of turbines and their global positions set at initialization
 - Each instance optionally solved in parallel with OpenMP
- Subcycled for smaller time steps


OpenFAST States: **Outputs:** OpenFAST's states · Hub position/orientation Inputs: Parameters: · Rotor diameter · Disturbed wind OpenFAST's parameters Rotor rel. velocity and skew · Shared-mooring reactions Turbine origin Rotor thrust and torque Wake plane geometry Floater motion Wind domain geometry

Super Controller

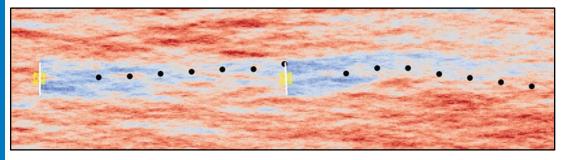

- Interface to ROSCO through ZeroMQ message passing:
 - Receives data from individual WT controllers
 - Sends commands to individual WT controllers
- Sample super controller (WHOC: Wind Hybrid Open Controller) coming soon supporting wake steering and consensus control
- Or user-defined implementation


MoorDyn

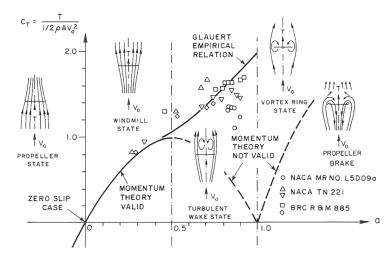
- Same as in OpenFAST, but for shared moorings at farm level
- Lumped-mass dynamics
- Multi-segmented array of taut or catenary lines
- Nonlinear geometric restoring
- Elastic stretching and damping:
 - o Linear
 - Synthetics w/ viscoelastics
- Bending for dynamic power cable
- Nonlinear spring elements
- Hydrodynamic added mass and drag
- Apparent weight of lines
- User-specified wave kinematics
 - No coupling yet to SeaState*
- Clump weights and buoyancy cans
- Line failure
- · Seabed bathymetry and friction

Wake Dynamics

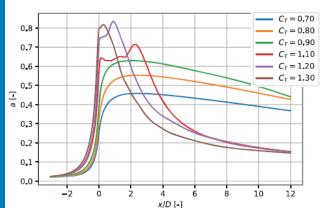
- Wake dynamics for an individual rotor
 - One instance per rotor
 - Solved on wake planes in meandering frame of reference
- Many CFD-calibrated parameters (dependent on turbine operation and atmospheric condition)

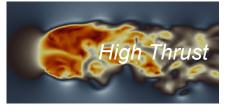

Wake Dynamics

Wake Advection, Deflection, and Meandering:

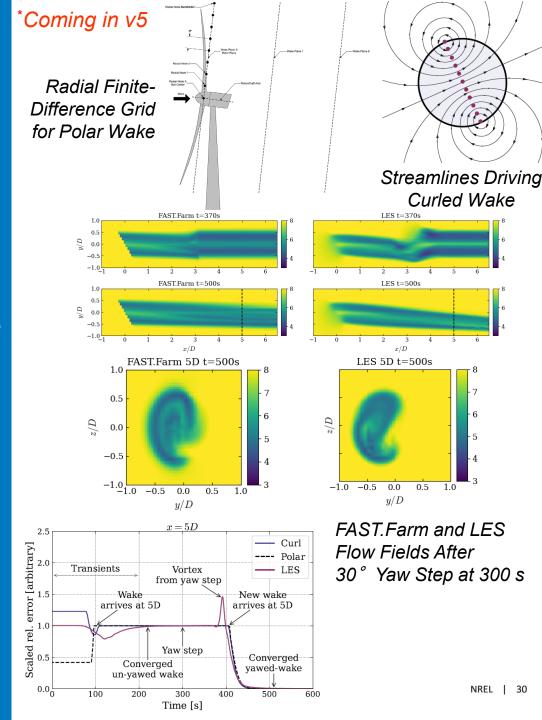

- Simple extensions to passivetracer solution:
 - 3D passive tracer, including spatially averaged velocity of disturbed (not just ambient)
 - Wake planes released parallel to rotor plane (not wind)
 - Low-pass time-filter of inputs at rotor (not fixed)

Near-Wake Correction

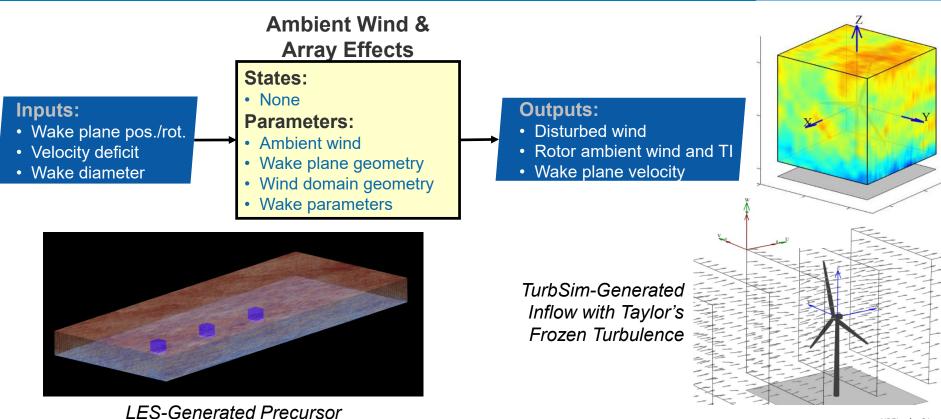

- Calculates near-wake (pressuregradient zone) correction to wake deficit:
 - Low thrust $(C_T < 24/25)$ momentum theory
 - High thrust $(1.1 < C_T < 2)$ Gaussian fit to LES
 - Transition: Blending of these two


Wake Meandering

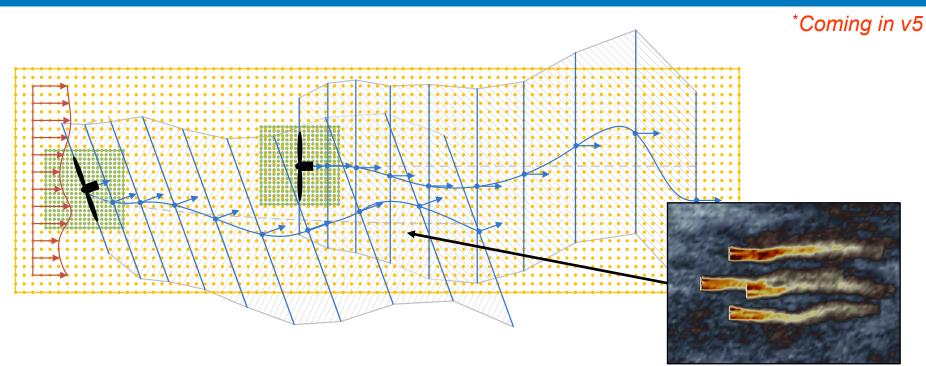
Thrust Coefficient versus Induction at the Rotor

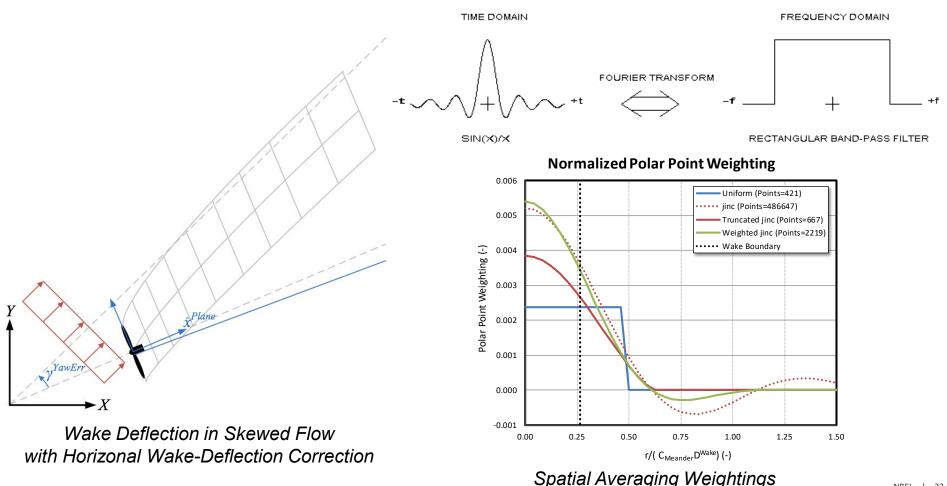


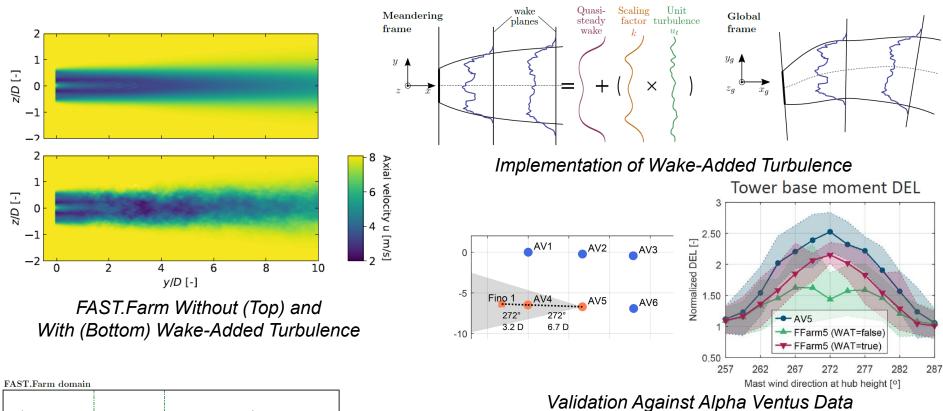
LES Solutions for Induction Downstream of a Rotor

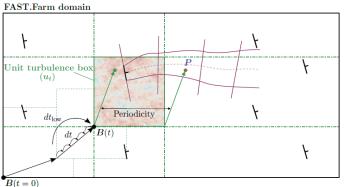

Wake Dynamics

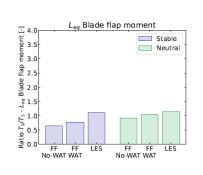
Wake-Deficit Increment:

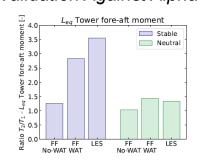

- Increments quasi-steady axisymmetric wake deficit downwind:
 - Polar Solved via thin shear-layer approximation of momentum and continuity in axisymmetric coordinates via 2nd-order accurate Crank-Nicolson scheme
 - Curled Solves momentum for axial induction resulting from trailing vortex-induced velocities in Cartesian coordinates via 1storder Euler scheme
 - Pending improvements for continuity, high shear, and veer*
 - Turbulence closure through eddyviscosity model, including influence of ambient turbulence and wake shear layer

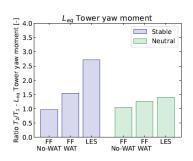

- Processes ambient flow:
 - For both the low- and high-resolution domains
 - LES precursor (e.g., from AMR-Wind) is 3D+time and may include atmospheric stability effects and terrain (recommended for moderate-to-large farms)
 - \circ Synthetic (TurbSim or Mann) is 2D+time \rightarrow 3D+time via Taylor's Frozen turbulence
 - Future work: hybrid inflow generation (low: precursor, high: synthetic)

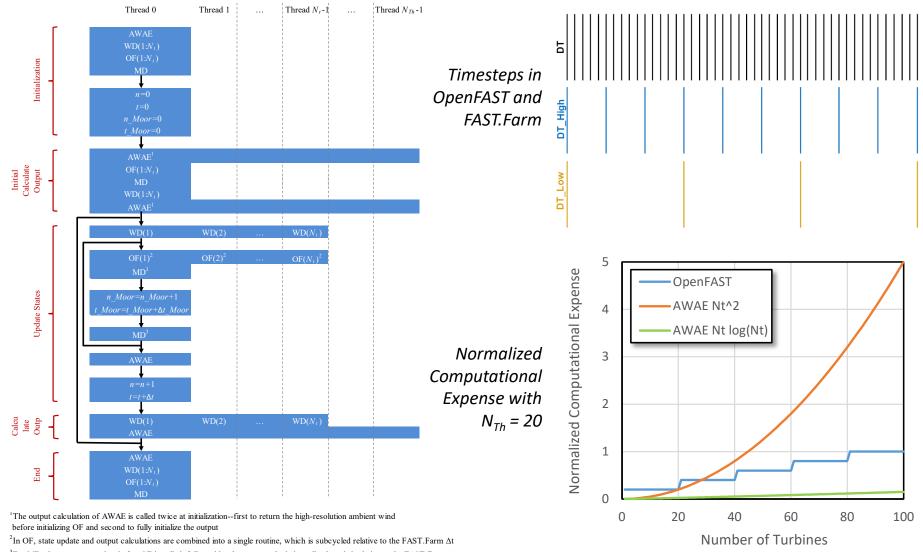

- Identifies zones of overlap between wakes and merges wake deficits:
 - Local, not global, superposition
 - Root-sum-square method for axial wake deficits
 - Vector-sum superposition for transverse wake deficits
 - Calculations require looping through grid points, turbines, and wake planes
 - \circ Support for regions of wake influence coming soon $(N_t^2 \rightarrow N_t \log(N_t))$ operation)*
 - Optionally parallelized with OpenMP




- Spatially averages disturbed flow across wake planes:
 - Use of disturbed wind supports wake deflection in skewed flow and wake advection speed up from near-to-far wake
 - Three optional weightings (uniform, truncated jinc, windowed jinc)

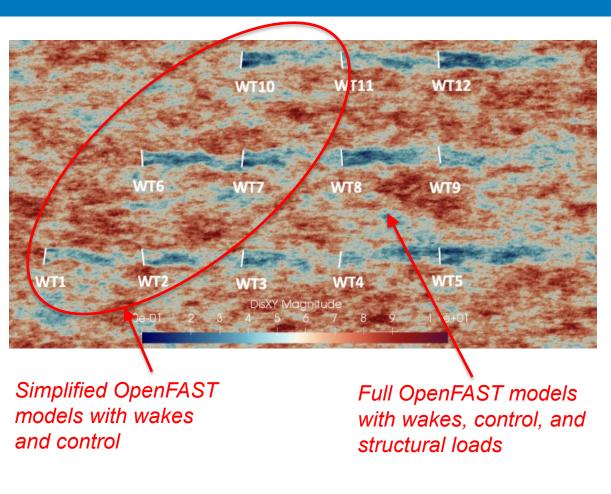


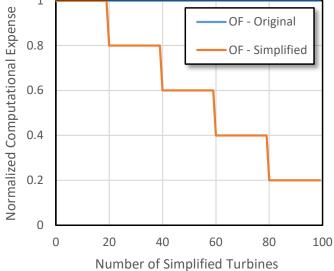

Superimposes wake-added turbulence



Unit Turbulence Tiling the Domain

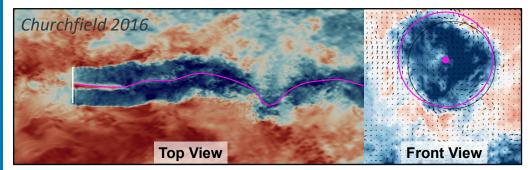
Validation Against LES

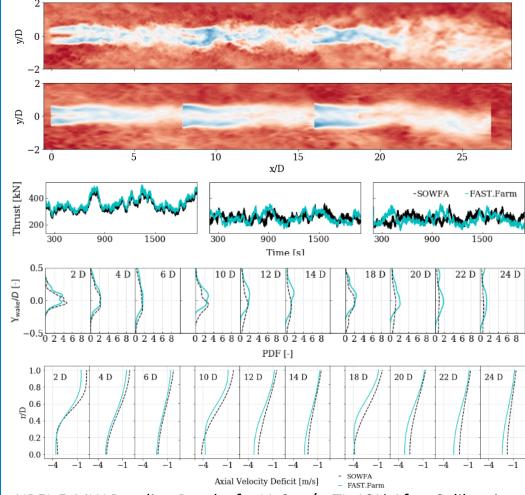

FAST.Farm Driver


 Calls individual modules, derives module inputs from outputs, and drives timedomain solution forward

 $^{^3}$ For MD, the states are updated after OF is called, followed by the output calculation, all subcycled relative to the FAST.Farm Δt

Simplified Turbine Modeling




Normalized Computational Expense with 100 Turbines on 20 Threads

Calibration of Wake Parameters

- Many (≈20) parameters influence FAST.Farm wake dynamics
- Calibration against LES has been used to set default parameters
- Approach:
 - Identify calibration cases
 - Identify starting values and range of calibration parameters
 - Run LES and extract wake characteristics
 - Run FAST.Farm with varied parameters (sequenced grid search)
 - Identify parameters that minimize error between FAST.Farm and LES
- Past calibrations: original (NREL 5-MW), curled wake, IEA 15-MW, floating, wake-added turbulence

SOWFA-Derived Wake Deficit & Centerline

NREL 5-MW Baseline Results for V=8 m/s, TI=10% After Calibration

Example 0

FAST.Farm Input File and Modeling Guidance

```
--- FAST.Farm FOR OpenFAST INPUT FILE ---
  Sample FAST.Farm input file
  --- SIMULATION CONTROL --- 9
  False .... Echo ... Echo input data to <RootName>.ech? (flag)
  FATAL · · · · · · · AbortLevel · · · · · Error level when simulation should abort (string) {"WARNING", "SEVERE", "FATAL"}
  2000.0 TMax Total run time (s) [>=0.0]
  Mod WaveField Wave field handling (switch) {1: use individual HydroDyn inputs without adjustment, 2: adjust wave phases based
      ---SHARED MOORING SYSTEM --- [used only for Mod SharedMoor>0]
11
    SharedMoorFile Name of file containing shared mooring system input parameters (quoted string) [used only when Mod SharedMooring
  0.04 DT Mooring Time step for farm-level mooring coupling with each turbine (s) [used only when Mod SharedMooring > 0]
  False WrMooringVis Write shared mooring visualization, at the global FAST. Farm time step (-) [used only for Mod SharedMooring = 3]
  --- AMBIENT WIND: PRECURSOR IN VTK FORMAT --- [used only for Mod AmbWind=1]
  2.0 DT Low-VTK Time step for low -resolution wind data input files ; will be used as the global FAST.Farm time step (s) [>0.0]
  0.3333333 DT High-VTK Time step for high-resolution wind data input files (s) [>0.0]
  "Y:\Wind\Public\Projects\Projects F\FAST.Farm\AmbWind\steady" ..... WindFilePath .... Path name to VTK wind data files from precursor (string)
  False ChkWndFiles Check all the ambient wind files for data consistency? (flag)
  --- AMBIENT WIND: INFLOWWIND MODULE --- [used only for Mod AmbWind=2 or 3]
  2.0 DT Low Time step for low -resolution wind data interpolation; will be used as the global FAST.Farm time step (s) [>0.0]
  0.3333333 DT High Time step for high-resolution wind data interpolation (s) [>0.0]
21
     ······NY Low······Number·of low-resolution spatial nodes in Y-direction for wind data interpolation (-) [>=2]
    5.0 X0 Low Origin of low -resolution spatial nodes in X direction for wind data interpolation (m)
  5.0 ·················Y0 Low··········Origin· of low -resolution spatial nodes in Y direction for wind data interpolation (m)
  5.0 ZO Low Origin of low -resolution spatial nodes in Z direction for wind data interpolation (m)
  10.0 dX Low Spacing of low -resolution spatial nodes in X direction for wind data interpolation (m) [>0.0]
28
  10.0 dZ Low Spacing of low -resolution spatial nodes in Z direction for wind data interpolation (m) [>0.0]
31 16 NX High Number of high-resolution spatial nodes in X direction for wind data interpolation (-) [>=2]
32 16 NY High Number of high-resolution spatial nodes in Y direction for wind data interpolation (-) [>=2]
33 17 NZ High Number of high-resolution spatial nodes in Z direction for wind data interpolation (-) [>=2]
34 "InflowWind.dat" InflowFile Name of file containing InflowWind module input parameters (quoted string)
```

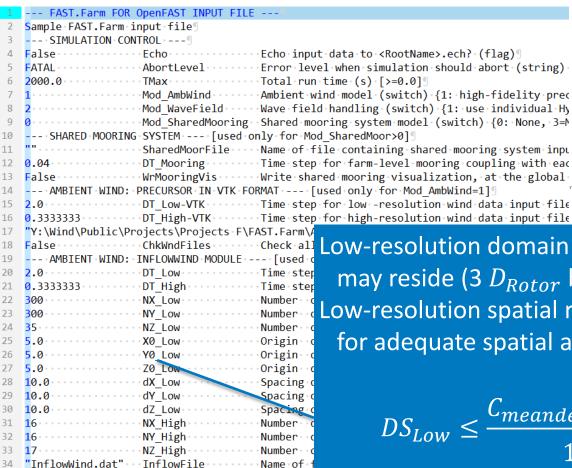
```
--- FAST.Farm FOR OpenFAST INPUT FILE ---
   Sample FAST.Farm input file
   --- SIMULATION CONTROL --- 9
         · · · · · · Echo
                          ..... Echo input data to <RootName>.ech? (flag)
                 -----AbortLevel------Error-level-when-simulation-should-abort-(string)-{"WARNING",-"SEVERE",-"FATAL"}
          ····TMax
                           Total run time (s) [>=0.0]
              Mod AmbWind Ambient wind model (switch) {1: high-fidelity precursor in VTK format, 2: one InflowWind module, 3: multiple ins
                   Mod WaveField Wave field handling (switch) {1: use individual HydroDyn inputs without adjustment, 2: adjust wave phases based
                  ----Mod MaredMooring-Shared-mooring-system-model-(switch)-{0:-None,-3=MoorDyn}}
       SHARED MOORING SYSTEM --- [used only for Mod SharedMoor>0]
                   SharedNoorFile ... Name of file containing shared mooring system input parameters (quoted string) [used only when Mod SharedMooring
                                    ---Time-step-for-farm-level-mooring-coupling-with-each-turbine-(s)-[used-only-when-Mod_SharedMooring->-0]
   False WrMooring Vis
                                       -Write shared mooring visualization, at the global FAST.Farm time step (-) [used only for Mod SharedMooring = 3]
   --- AMBIENT WIND: PRECURSOR IN VTK FORMAT --- [used only for Mod AmbWind=1]
                                     Time step for low -resolution wind data input files ; will be used as the global FAST.Farm time step (s) [>0.0]
       -----DT Low-VTK
   0.3333333 DT High-VTK
                                       Time step for high-resolution wind data input files (s) [>0.0]
   "Y:\Wind\Public\Projects\Project\"
                                   F\FAST.Farm\AmbWind\steady" WindFilePath Path name to VTK wind data files from precursor (string)
   False .... ChkWndFiles
                                       Check all the ambient wind files for data consistency? (flag)
   --- AMBIENT WIND: INFLOWWIND MODULE
                                     --- [used only for Mod AmbWind=2 or 3]
                                       ·Time step for low-resolution wind data interpolation; will be used as the global FAST.Farm time step (s) [>0.0]
      · · · · · DT Low
                                       Time step for high-resolution wind data interpolation (s) [>0.0]
   0.33333333 DT High
21
       · · · · · · · · · · · · · · · · · NX Low
                                       Number of low-resolution spatial nodes in X direction for wind data interpolation (-) [>=2]
       -----NY Low
                                       Number of low-resolution spatial nodes in Y direction for wind data interpolation (-) [>=2]
                                       Number of low -resolution spatial nodes in Z direction for wind data interpolation (-) [>=2]
                                       Or gine of low -resolution spatial nodes in X direction for wind data interpolation (m)
       ----Y0 Low
                                       Origin of low -resolution spatial nodes in Y direction for wind data interpolation (m)
       -----Z0 Low
                                       Origin of low resolution spatial nodes in Z direction for wind data interpolation (m)
                                       Spacing of low -resolution spatial nodes in X direction for wind data interpolation (m) [>0.0]
28
        -----dY Low
                                       Spacing of low -resolution spatial nodes in Y direction for wind data interpolation (m) [>0.0]
        · · · · · · dZ Low
                                       Spacing of low-resolution spatial nodes in Z direction for wind data interpolation (m) [>0.0]
         ·····NX High
                                       Number of high-resolution spatial nodes in X direction for wind data interpolation (-) [>=2]
31
      ·····NY High
                                       Number of high-resolution spatial nodes in Y direction for wind data interpolation (-) [>=2]
33 17 · · · · · · · · · NZ High
                                       Number of high-resolution spatial nodes in Z direction for wind data interpolation (-) [>=2]
34 "InflowWind.dat" InflowFile
                                       Name of file containing InflowWind module input parameters (quoted string)
```

TMax – Supersedes TMax in OpenFAST model(s)

```
--- FAST.Farm FOR OpenFAST INPUT FILE ---
   Sample FAST.Farm input file
   --- SIMULATION CONTROL --- 9
   False Echo Echo Echo input data to <RootName>.ech? (flag)
              AbortLevel Error level when simulation should abort (string) {"WARNING", "SEVERE", "FATAL"}
          TMax Total run time (s) [>=0.0]
          Mod AmbWind ...... Ambient wind model (switch) {1: high-fidelity precursor in VTK format, 2: one InflowWind module, 3: multiple ins
             Mod WaveField Wave field handling (switch) {1: use individual HydroDyn inputs without adjustment, 2: adjust wave phases based
                ·····Mod SharedMooring Shared mooring system model (switch) {0: None, 3=MoorDyn}}
     - SHARED MOORING SYSTEM \-- [used only for Mod SharedMoor>0]
                  ···SharedMoorFile···Name of file containing shared mooring system input parameters (quoted string) [used only when Mod SharedMooring
                                     ---Time-step-for-farm-level-mooring-coupling-with-each-turbine-(s)-[used-only-when-Mod_SharedMooring->-0]
   False WrMooring Vis Write shared mooring visualization, at the global FAST. Farm time step (-) [used only for Mod Shared Mooring = 3]
   --- AMBIENT WIND: PRECURSOR IN VTK FORMAT --- [used only for Mod AmbWind=1]
                                   Time step for low -resolution wind data input files ; will be used as the global FAST.Farm time step (s) [>0.0]
   2.0 DT Low-VTK
   0.3333333 DT High-VTK
                                       Time step for high-resolution wind data input files (s) [>0.0]
   "Y:\Wind\Public\Projects\Projects
                                   F\FAST.Farm\AmbWind\steady"..........WindFilePath.......Path name to VTK wind data files from precursor (string)
  False ChkWndFiles
                                       Check all the ambient wind files for data consistency? (flag)
   --- AMBIENT WIND: INFLOWWIND MODUL
                                     --- [used only for Mod AmbWind=2 or 3]
   2.0 .... DT Low
                                      Time step for low-resolution wind data interpolation; will be used as the global FAST.Farm time step (s) [>0.0]
                                       •Time step for high-resolution wind data interpolation (s) [>0.0]
   0.33333333 .... DT High
21
      · · · · · · · · · · · · · · · · · NX Low
                                       Number of low-resolution spatial nodes in X direction for wind data interpolation (-) [>=2]
       · · · · · · NY Low
                                       Number of low-resolution spatial nodes in Y direction for wind data interpolation (-) [>=2]
        · · · · · · · · NZ Low
                                       Number of low -resolution spatial nodes in Z direction for wind data interpolation (-) [>=2]
                                       Origin of low resolution spatial nodes in X direction for wind data interpolation (m)
26 5.0 · · · · · · · · Y0 Low
                                       Origin of low-resolution spatial nodes in Y-direction for wind data interpolation (m)
      -----Z0 Low
                                       Origin of low resolution spatial nodes in Z direction for wind data interpolation (m)
             · · · · · · · · · dX Low
                                       Spacing of low -resolution spatial nodes in X direction for wind data interpolation (m) [>0.0]
28
   10.0 - - - dY Low
                                       Spacing of low -resolution spatial nodes in Y direction for wind data interpolation (m) [>0.0]
       -----dZ Low
                                       | Spacing of low-resolution-spatial nodes in Z-direction for wind data interpolation (m) [>0.0]
     ·····NX High
                                       Number \of high-resolution spatial nodes in X direction for wind data interpolation (-) [>=2]
32 16 · · · · · · · · · NY High
                                       Number of high-resolution spatial nodes in Y direction for wind data interpolation (-) [>=2]
33 17 · · · · · · · · · NZ High
                                       Number of high-resolution spatial nodes in Z direction for wind data interpolation (-) [>=2]
34 "InflowWind.dat" InflowFile
                                       Name of file containing InflowWind module input parameters (quoted string)
```

Mod_AmbWind – Ambient wind model: 1) High-fidelity precursor

- 2) Single InflowWind (simple, TurbSim, Mann)
- 3) Multiple InflowWind (low- and high-res. Domains)


```
--- FAST.Farm FOR OpenFAST INPUT FILE ---
   Sample FAST.Farm input file
   --- SIMULATION CONTROL --- 9
   False Echo Echo Echo input data to <RootName>.ech? (flag)
         TMax Total run time (s) [>=0.0]
     Mod AmbWind Ambient wind model (switch) {1: high-fidelity precursor in VTK format, 2: one InflowWind module, 3: multiple ins
           Mod WaveField Wave field handling (switch) {1: use individual HydroDyn inputs without adjustment, 2: adjust wave phases based
              ······Mod SharedMooring Shared mooring system model (switch) {0: None, 3=MoorDyn}}¶
    -- SHARED MOORING SYSTEM -\- [used only for Mod SharedMoor>0]
               · · · · SharedMoorFile
                                 Name of file containing shared mooring system input parameters (quoted string) [used only when Mod SharedMooring
       ·····DT Mooring
                                    -Time-step-for-farm-level-mooring-coupling-with-each-turbine-(s)-[used-only-when-Mod_SharedMooring->-0]
   False WrMooringVis
                                    Write shared mooring visualization, at the global FAST.Farm time step (-) [used only for Mod SharedMooring = 3]
   --- AMBIENT WIND: PRECURSOR IN VTK FORMAT --- [used only for Mod AmbWind=1]
                                    Time step for low-resolution wind data input files ; will be used as the global FAST.Farm time step (s) [>0.0]
   2.0 · · · · · · · DT Low-VTK
   0.3333333 DT High-VTK
                                    Time step for high-resolution wind data input files (s) [>0.0]
   False ChkWndFiles
                                    Check all the ambient wind files for data consistency? (flag)
   --- AMBIENT WIND: INFLOWWIND MODULE
                                   -- [used only for Mod AmbWind=2 or 3]
   2.0 .... DT Low
                                    Time step for low -resolution wind data interpolation; will be used as the global FAST.Farm time step (s) [>0.0]
                                    Time step for high-resolution wind data interpolation (s) [>0.0]
   0.33333333 .... DT High
21
      - - - - · NX Low-
                                    Number of low -resolution spatial nodes in X direction for wind data interpolation (-) [>=2]
      · · · · · · NY Low
                                    Number of low resolution spatial nodes in Y direction for wind data interpolation (-) [>=2]
                                    Number of low -resolution spatial nodes in Z direction for wind data interpolation (-) [>=2]
                                    Origin of low resolution spatial nodes in X direction for wind data interpolation (m)
  5.0 · · · · · · · · Y0 Low
                                    Origin of low-resolution spatial nodes in Y direction for wind data interpolation (m)
      ---- Z0 Low
                                    Origin of low resolution spatial nodes in Z direction for wind data interpolation (m)
                                    Spacing of low -resolution spatial nodes in X direction for wind data interpolation (m) [>0.0]
28
   10.0 - - - dY Low
                                    Spacing of low -resolution spatial nodes in Y direction for wind data interpolation (m) [>0.0]
  10.0 - - - - dZ Low
                                    Spacing of low-resolution spatial nodes in Z-direction for wind data interpolation (m) [>0.0]
31 16 · · · · · · · · · · · NX High
                                    Number of high-resolution spatial nodes in X direction for wind data interpolation (-) [>=2]
32 16 · · · · · · · · · · NY High
                                    Number - of high-resolution spatial nodes in Y direction for wind data interpolation (-) [>=2]
33 17 · · · · · · · · · NZ High
                                    Number of high-resolution spatial nodes in Z direction for wind data interpolation (-) [>=2]
34 "InflowWind.dat" InflowFile
                                    ·Name·of·file·containing·InflowWind·module·input·parameters (quoted·string)
```

Mod_WaveField – Wave field handling:

- 1) Waves in each OpenFAST model are independent
- 2) Waves propagate across wind farm

```
--- FAST.Farm FOR OpenFAST INPUT FILE ---
  Sample FAST.Farm input file
  --- SIMULATION CONTROL --- 9
       Echo Echo Echo Echo input data to <RootName>.ech? (flag)
        Total run time (s) [>=0.0]
   Mod AmbWind Ambient wind model (switch) {1: high-fidelity precursor in VTK format, 2: one InflowWind module, 3: multiple ins
         Mod WaveField Wave field handlin
            ·····Mod SharedMooring Shared mooring sys
                                              Low-resolution time step should be sufficient to
    - SHARED MOORING SYSTEM --- [used only for Mod SharedMo
          SharedMoorFile Name of file contag
                                                                                                                  oring
                                                resolve wake meandering time scales
  0.04 Time step for farm
  False WrMooringVis Write shared mooring
                                                                                                                  = 3]
                                              High-resolution time step should be sufficient to
  --- AMBIENT WIND: PRECURSOR IN VTK FORMAT --- [used only
                                                                                                                  >0.01
15 2.0 Time step for low
16 0.3333333 DT High-VTK Time step for high
                                                 resolve turbulent wind excitation
  "Y:\Wind\Public\Projects\Projects F\FAST.Farm\AmbWind\st
18 False ChkWndFiles Check all the ambi
  --- AMBIENT WIND: INFLOWWIND MODULE --- [used only for M
                                                                                                                  >0.01
  2.0 .... DT Low
                               Time step for low
                                                              DT_{Low} \leq \frac{C_{Meander}D_{wake}}{10V_{hub}}DT_{High} \leq \frac{1}{2f_{max}}
21 0.3333333 .... DT High
                        .....ime step for high
  300 · · · · · · · · · · · · NX Low
                        Number of low -re
     ----NY Low
                               Number of low -re
          · · · · · · · · · NZ Low ·
                         Number of low -re
           . . . . . . . X0 Low
                              Origin of low -re
        -----Y0 Low--
                              Origin of low
          · · · · · Z0 Low
                              Origin of low -re
      · · · · · · dX Low
                      Spacing of low -re
                                              C_{Meander} \approx 2 \text{ (DEFAULT} = 1.9)
                                              D_{Wake} \approx D
                                              Curled wake may need smaller DT<sub>Low</sub>
                                              DT_{High} must be an integer divisor of DT_{Low}
                                              DT in OpenFAST be an integer divisor of DT<sub>Low</sub>
```

```
--- FAST.Farm FOR OpenFAST INPUT FILE ---
   Sample FAST.Farm input file
   --- SIMULATION CONTROL --- 9
        Echo Echo Echo Echo input data to <RootName>.ech? (flag)
   FATAL · · · · · · · · AbortLevel · · · · · Error level when simulation should abort (string) {"WARNING", "SEVERE", "FATAL"}
         TMax Total run time (s) [>=0.0]
         Mod AmbWind ...... Ambient wind model (switch) {1: high-fidelity precursor in VTK format, 2: one InflowWind module, 3: multiple ins
            Mod WaveField Wave field handling (switch) {1: use individual HydroDyn inputs without adjustment, 2: adjust wave phases based
             Mod SharedMooring Shared mooring system model (switch) {0: None, 3=MoorDyn}}
    -- SHARED MOORING SYSTEM --- [used only for Mod SharedMoor>0]
            SharedMoorFile Name of file containing shared mooring system input parameters (quoted string) [used only when Mod SharedMooring
   0.04 DT Mooring Time step for farm-level mooring coupling with each turbine (s) [used only when Mod SharedMooring > 0]
   False WrMooringVis Write shared mooring visualization, at the global FAST.Farm time step (-) [used only for Mod SharedMooring = 3]
   --- AMBIENT WIND: PRECURSOR IN VTK FORMAT --- [used only for Mod AmbWind=1]
      DT Low-VTK Time step for low -resolution wind data input files ; will be used as the global FAST.Farm time step (s) [>0.0]
   0.3333333 DT High-VTK Time step for high-resolution wind data input files (s) [>0.0]
   "Y:\Wind\Public\Projects\Projects F\FAST.Farm\AmbWind\steady" ... WindFilePath Path name to VTK wind data files from precursor (string)
   False ..... ChkWndFiles ..... Check all the ambient wind files for data consistency? (flag)
   --- AMBIENT WIND: INFLOWWIND MODULE --- [used only for Mod AmbWind=2 or 3]
  2.0 DT_Low Time step for low -resolu | C:\Users\jjonkman\Documents\JasonJonkman\BudgetPlanning\LDRD\FY2015\WindPlantEngineeringTool\FA
   0.33333333
DT_High
Time step for high-resolu
21
      NX Low Number of low -resolutio
      .....NY Low......Number of low-resolutio
                                                                     « FAST.Farm_Development > Validation_Case5 > AmbWind > N3 > Low
                                                                                                                     Search Low
          NZ Low Number of low -resolutio
                                                                    Validation Case5
                                                                                            Name
      AmbWind
      Y0 Low Origin of low -resolutio
                                                                                               Amb.t0.vtk
      Z0 Low Origin of low -resolutio
                                                                                               Amb.t1.vtk
            28
                                                                       HighT1
                                                                                               Amb.t2.vtk
       ......dY Low......Spacing of low -resolutio
                                                                       HighT2
                                                                                               Amb.t3.vtk
       dZ Low Spacing of low -resolutio
                                                                                               Amb.t4.vtk
                                                                       HighT3
     NX High Number of high-resolutio
31
                                                                                               Amb.t5.vtk
                                                                       Low
     .....NY High.....Number of high-resolutio
                                                                                               Amb.t6.vtk
                                                                     FinalSoInFromTORQUE2018Paper
33 17 ..... NZ High .... Number of high-resolutio
                                                                                               Amb.t7.vtk
                                                                       NRELResults
"InflowWind.dat" InflowFile Name of file containing I
                                                                                               Amb.t8.vtk
                                                                       OpenFAST
                                                                                               Amb.t9.vtk
                                                                    > Win32
                                                                                               Amb.t10.vtk
                                                                   Neutral_8mps_3WT.zip
                                                                                               Amb.t11.vtk
                                                                    Financials
                                                                                               Amb.t12.vtk
                                                                                               Amb.t13.vtk
                                                                    HPCAllocation
                                                                                               Amb.t14.vtk
                                                                    Manual
                                                                                               Amb.t15.vtk
                                                                  > | OWEZ
                                                          1,000 items
                                                                                                                           NREL
```


(NX-1)dX ins sed (NX-1)dX 3] (

Low-resolution domain should extend wherever wakes may reside (3 D_{Rotor} boundaries), except downstream Low-resolution spatial resolution should be sufficient for adequate spatial averaging

$$DS_{Low} \le \frac{C_{meander}D_{wake}V_{hub}}{150\frac{m}{s}} = \frac{DT_{Low}V_{hub}^2}{15\frac{m}{s}}$$

S = X, Y, or ZCurled wake may need smaller DS_{Low} Set velocities to NaN for any point below the ground

```
--- FAST.Farm FOR OpenFAST INPUT FILE ---
  Sample FAST.Farm input file
   --- SIMULATION CONTROL --- 9
  False Echo Echo Echo input data to <RootName>.ech? (flag)
  FATAL · · · · · · · AbortLevel · · · · · Error level when simulation should abort (string) {"WARNING", "SEVERE", "FATAL"}
  2000.0 TMax Total run time (s) [>=0.0]
  Mod WaveField Wave field handling (switch) {1: use individual HydroDyn inputs without adjustment, 2: adjust wave phases based
        Mod SharedMooring Shared mooring system model (switch) {0: None, 3=MoorDyn}}
    -- SHARED MOORING SYSTEM --- [used only for Mod SharedMoor>0]
        SharedMoorFile Mame of file containing shared mooring system input parameters (quoted string) [used only when Mod SharedMooring
  0.04 ······ DT_Mooring ···· Time step for farm-level mooring coupling with each turbine (s) [used only when Mod_SharedMooring > 0]
  False WrMooringVis Write shared mooring visualization, at the global FAST.Farm time step (-) [used only for Mod SharedMooring = 3]
  --- AMBIENT WIND: PRECURSOR IN VTK FORMAT --- [used only for Mod AmbWind=1]
15 2.0 DT Low-VTK Time step for low -resolution wind data input files ; will be used as the global FAST. Farm time step (s) [>0.0]
16 0.3333333 DT High-VTK Time step for high-resolution wind data input files (s) [>0.0]
  "Y:\Wind\Public\Projects\Projects F\FAST.Farm\AmbWind\steady" ..... WindFilePath .... Path name to VTK wind data files from precursor (string)
18 False ...... ChkWndFiles ..... Check all the ambient wind files for data consistency? (flag)
  --- AMBIENT WIND: INFLOWWIND MODULE --- [used only for Mod AmbWind=2 or 3]
  2.0 DT Low Time step for low -resolution wind data interpolation; will be used as the global FAST.Farm time step (s) [>0.0]
  0.3333333 · · · · DT_High · · · · · Time step for high-resolution wind data interpolation (s) [>0.0]
  300 NX Low Number of low -resolution spatial nodes in X direction for wind data interpolation (-) [>=2]
  300 ······NY Low ·····Number of low -resolution spatial nodes in Y direction for wind data interpolation (-) [>=2]
    5.0 X0 Low Origin of low resolution spatial nodes in X direction for wind data interpolation (m)
26 5.0 ············Y0 Low··········Origin of low
                                           When using TurbSim or Mann:
27 5.0 Origin of low
28 10.0 Spacing of low
29 10.0 Spacing of low
30 10.0 Spacing of low
```

32 16 NY High Number of high 33 17 ···· NZ_High ··· Number of high

34 "InflowWind.dat" InflowFile Name of file co

- Recommend generating periodic winds
- 31 16 · · · · · · · · · · · NX High · · · · · · Number · of high Recommend aligning full-field grid w/ low- and high-resolution domain points
 - Recommend PropogationDir = 0° , $\pm 90^{\circ}$, or 180°
 - Importance of transverse coherence
 - HubHt / GridHeight issue in TurbSim
 - X / Time problem in Mann

```
--- WIND TURBINES --- 9
  1 NumTurbines Number of wind turbines (-) [>=1] [last 6 columns below used only for Mod AmbWind=2 or
  WT X WT Y WT Z WT FASTInFile X0 High dX High dY High dZ High
  (m) (m) (m) (string) (m) (m) (m) (m) (m)
  605.0 1500.0 0.0 "Y:\Wind\Public\Projects\Projects F\FAST.Farm\MasterModel\FAST\Test18.fst" 525.0 1425.0 5.0 10.0 10.0 10.0 10.0
  --- WAKE DYNAMICS --- ¶
  126.0 RotorDiamRef Reference turbine rotor diameter for wake calculations (m) [>0.0]
  5.0 dr Radial increment of the wake plane finite-difference grid (m) [>0.0]
  40 ······ NumRadii ···· Number of radii in the wake plane finite-difference grid (-) [>=2]
  140 NumPlanes Number of wake planes (-) [>=2]
  DEFAULT for the wake advection, deflection, and meandering model [
 DEFAULT C HWkDfl 0 Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor
  DEFAULT C HWkDfl OY Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor scaled wi
  DEFAULT C HWkDfl x Calibrated parameter in the correction for wake deflection defining the horizontal offset scaled wi
50 DEFAULT .... C HWkDfl xY .... Calibrated parameter in the correction for wake deflection defining the horizontal offset ... scaled wi
51 DEFAULT ...... C NearWake ...... Calibrated parameter for the near-wake correction (-) [>1.0 and <2.5] or DEFAULT [DEFAULT=1.8]
52
 DEFAULT k vAmb Calibrated parameters for the influence of ambient turbulence in the eddy viscosity (set of 5 parameters: k, FMi
54 DEFAULT ...... Mod WakeDiam .... Wake diameter calculation model (switch) {1: rotor diameter, 2: velocity based, 3: mass-flux based, 4: momentum-
  DEFAULT C WakeDiam Calibrated parameter for wake diameter calculation (-) [>0.0 and <0.99] or DEFAULT [DEFAULT=0.95] [unused for Mo
  DEFAULT Mod Meander Spatial filter model for wake meandering (-) (switch) {1: uniform, 2: truncated jinc, 3: windowed jinc} or DEFAU
57
  DEFAULT C Meander Calibrated parameter for wake meandering (-) [>=1.0] or DEFAULT=1.9]
  --- CURLED-WAKE PARAMETERS [only used if Mod Wake=2 or 3] ---
  DEFAULT Swirl Swirl Flag to include swirl velocities in wake (flag) [DEFAULT=TRUE]
  DEFAULT ...... k VortexDecay ..... Vortex decay constant for curl (-) [DEFAULT=0.0001]
 DEFAULT sigma D The width of the vortices in the curled wake model non-dimesionalized by rotor diameter (-) [DEFAULT=0.2]
  DEFAULT FilterInit Switch to filter the initial wake plane deficit and select the number of grid points for the filter (switch) {0:
  DEFAULT k vCurl Calibrated parameter for scaling the eddy viscosity in the curled-wake model (-) [>=0] or DEFAULT [DEFAULT=2.0]
  --- WAKE-ADDED TURBULENCE --- 9
  2 WAT Switch between wake-added turbulence box options (switch) {0: no wake added turbulence, 1: predefined turbulence
67
  "../WAT MannBoxDB/FFDB D100 512x512x64.u" WAT BoxFile Filepath to the file containing the u-component of the turbulence box (either predefined or use
69 512, 512, 64 WAT NxNyNz Number of points in the x, y, and z directions of the WAT BoxFile (-) [used only if WAT=2, derived value
70 5.0, 5.0, 5.0 WAT DxDyDz Distance between points in the x, y, and z directions of the WAT BoxFile (m) [used only if WAT=2, derived value
71 DEFAULT WAT ScaleBox Flag to scale the input turbulence box to zero mean and unit standard deviation at every node (flag) [DEFAULT=Fa
72 DEFAULT WAT k Def Calibrated parameters for the influence of the maximum wake deficit on wake-added turbul
73 DEFAULT WAT k Grad Calibrated parameters for the influence of the radial velocity gradient of the wake deficit on wake-added turbul
```

```
--- WIND TURBINES --- 9
                           NumTurbines Number of wind turbines (-) [>=1] [last 6 columns below used only for Mod AmbWind=2 or
    WT X WT Y WT Z WT FASTInFile X0 High dX High dY High dZ High
                                          (m) (m)
     (m) · · · (m) · · · (string)
     605.0 1500.0 0.0 "Y:\Wind\Public\Projects\Projects F\FAST.Farm\MasterModel\FAST\Test18.fst" 525.0 1425.0 5.0 10.0 10.0 10.0 10.0
         WAKE DYNAMICS
                                                   ·Switch between wake formulations (switch) {1:Polar, 2:Curl, 3:Cartesian} 🖣
     126.0
                            RotorDiamRef
                                                   Reference turbine rotor diameter for wake calculations (m) [>0.0]
     5.0
                                                    Radial increment of the wake plane finite-difference grid (m) [>0.0]
                                                    Number of radii in the wake plane finite-difference grid (-) [>=2]
                                                   Number of wake planes (-) [>=2]
    DEFAULT
                                                    Cutoff (corner) frequency of the low-pass time-filter for the wake advection, deflection, and meandering model [
                                                   Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor
                            C HWkDfl O
                            C HWkDfl OY
                                                    Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor scaled wi
                            C NWkDfl x
                                                   Calibrated parameter in the correction for wake deflection defining the horizontal offset ..... scaled wi
                            C HWkDfl xY
50
                                                    Calibrated parameter in the correction for wake deflection defining the horizontal offset ...... scaled wi
                            C NearWake
                                                    Calibrated parameter for the near-wake correction (-) [>1.0 and <2.5] or DEFAULT [DEFAULT=1.8]
                            k vAmb
                                                    Calibrated parameters for the influence of ambient turbulence in the eddy viscosity (set of 5 parameters: k, FMi
52
53
                            k vShr
                                                    Calibrated parameters for the influence of the shear layer \cdots in the eddy viscosity (set of 5 parameters: k, FMi
                            Mod WakeDiam
                                                    Wake diameter calculation model (switch) {1: rotor diameter, 2: velocity based, 3: mass-flux based, 4: momentum-
                                                    Calibrated parameter for wake diameter calculation (-) [>0.0 and <0.99] or DEFAULT [DEFAULT=0.95] [unused for Mo
                          C WakeDiam
55
                                                    Spatial filter model for wake meandering (-) (switch) {1: uniform, 2: truncated jinc, 3: windowed jinc} or DEFAU

    Mod Meander

                         ··C Meander
                                                    Calibrated parameter for wake meandering (-) [>=1.0] or DEFAULT [DEFAULT=1.9]
     --- CURLED-WAKE PARAMETERS [only used if Mod Wake=2 or 3] ---
                                                    Flag to include swirl velocities in wake (flag) [DEFAULT=TRUE]
                           ·Swirl····
                      · · · · k VortexDecay
                                                   Vortex decay constant for curl (-) [DEFAULT=0.0001]
                           -NumVortices
                                                    he number of vortices in the curled wake model (-) [DEFAULT=100]
                         · sigma D
                                                    The width of the vortices in the curled wake model non-dimesionalized by rotor diameter (-) [DEFAULT=0.2]
                          · FilterInit
                                                    Switch to filter the initial wake plane deficit and select the number of grid points for the filter (switch) {0:
                           -k vCurl
                                                    Calibrated parameter for scaling the eddy viscosity in the curled-wake model (-) [>=0] or DEFAULT [DEFAULT=2.0]
64
                           Mod Projection
                                                    Switch to select how the wake plane velocity is projected in AWAE (switch) {1: keep all components, 2: project a
66
     --- WAKE-ADDED TURBULENCE --- 9
       Switch between wake-added turbulence box options (switch) {0: no wake added turbulence, 1: predefined turbulence
67
     "../WAT MannBoxDB/FFDB D100 512x512x64.u" WAT Box ile Filepath to the file containing the u-component of the turbulence box (either predefined or use
                                                                        points in the x -x - and z directions of the WAT_BoxFile (-) [used only if WAT=2, derived value
    512, 512, 64 WAT NXNyNz
                                                   Number of
                                                                                                                                    BoxFile (m) [used only if WAT=2, derived value
    5.0, 5.0, 5.0 WAT DxDyDz
                                                   Distance between
                                                                       Origin of each wind turbine dard deviation at every node (flag) [DEFAULT=Fa
71 DEFAULT .... WAT ScaleBox
                                                   Flag to scale t
72 DEFAULT .... WAT k Def
                                                   Calibrated para
                                                                                                                                              wake deficit on wake-added turbul
73 DEFAULT WAT k Grad Calibrated parameters for the influence of the radial velocity gradient of the wake deficit on wake-added turbul
```

```
--- WIND TURBINES --- 9
   1 NumTurbines NumDurbines Of wind turbines (-) [>=1] [last 6 columns below used only for Mod AmbWind=2 or
   WT X WT Y WT Z WT FASTInFile X0 High dX High dY High dZ High
                              (m) · · · (m) · · · (string)
   605.0 1500.0 0.0 "Y:\Wind\Public\Projects\Projects F\FAST.Farm\MasterModel\FAST\Test18.fst" 525.0 1425.0 5.0 10.0 10.0 10.0 10.0
   --- WAKE DYNAMICS --- "
                                     Switch between wake formulations (switch) {1:Polar, 2:Curl, 3:Cartesian} • ¶
   126.0 RotorDiamRef
                                     Reference turbine rotor diameter for wake calculations (m) [>0.0]
                                     Radial increment of the wake plane finite-difference grid (m) [>0.0]
   40 · · · · · · NumRadii
                                     Number of radii in the wake plane finite-difference grid (-) [>=2]
   140 · · · · NumPlanes
                                     Number of wake planes (-) [>=2]
   DEFAULT .... f c
                                     Cutoff (corner) frequency of the low-pass time-filter for the wake advection, deflection, and meandering model [
          ··················C HWkDfl 0
                                     Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor
  DEFAULT .... C HWkDfl OY
                                     Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor scaled wi
   DEFAULT C HWkDfl x
                                     Calibrated parameter in the correction for wake deflection defining the horizontal offset ..... scaled wi
                                     Calibrated parameter in the correction for wake deflection defining the horizontal offset ..... scaled wi
50 DEFAULT · · · · · · · · C HWkDfl xY
                                     Calibrated parameter for the near-wake correction (-) [>1.0 and <2.5] or DEFAULT [DEFAULT=1.8]
51 DEFAULT ..... C NearWake
52 DEFAULT · · · · · · · k vAmb
                                     Calibrated parameters for the influence of ambient turbulence in the eddy viscosity (set of 5 parameters: k, FMi
53 DEFAULT · · · · · · · k vShr
                                     Calibrated parameters for the influence of the shear layer \cdots in the eddy viscosity (set of 5 parameters: k, FMi
                ····Mod WakeDiam
                                     Nake diameter calculation model (switch) {1: rotor diameter, 2: velocity based, 3: mass-flux based, 4: momentum-
  DEFAULT .... C WakeDiam
                                     Calibrated parameter for wake diameter calculation (-) [>0.0 and <0.99] or DEFAULT [DEFAULT=0.95] [unused for Mo
                                     Spatial filter model for wake meandering (-) (switch) {1: uniform, 2: truncated jinc, 3: windowed jinc} or DEFAU
   DEFAULT ----- Mod Meander
57
   DEFAULT .... C Meander
                                     Calibrated parameter for wake meandering (-) [>=1.0] or DEFAULT [DEFAULT=1.9]
   --- CURLED-WAKE PARAMETERS [only used if Mod Wake=2 or 3] --- ¶
                                     Flag to include swirl velocities in wake (flag) [DEFAULT=TRUE]
   DEFAULT Swirl
   DEFAULT k VortexDecay
                                     Vortex decay constant for curl (-) [DEFAULT=0.0001]
                ----NumVortices
                                     The number of vortices in the curled wake model (-) [DEFAULT=100]
   DEFAULT sigma D
                                     The width of the vortices in the curled wake model non-dimesionalized by rotor diameter (-) [DEFAULT=0.2]
                ····FilterInit
                                     Switch to filter the initial wake plane deficit and select the number of grid points for the filter (switch) {0:
                ····k vCurl
                                     Calibrated parameter for scaling the eddy viscosity in the curled-wake model (-) [>=0] or DEFAULT [DEFAULT=2.0]
   DEFAULT Mod Projection
                                     Switch to select how the wake plane velocity is projected in AWAE (switch) {1: keep all components, 2: project a
   --- WAKE-ADDED TURBULENCE --- 9
   2 · · · · · · · · · · · · · · · · WAT · · · · · · · · · · · ·
                                     Switch between
                                                                                                                                  rbulence
                                                   Each turbine needs a set of OpenFAST input files
   "../WAT MannBoxDB/FFDB D100 512x512x64.u" WAT BoxFle
                                                                                                                                   d-or-use
                                                                                                                                  d-value
69 512, 512, 64 ······ WAT NxNyNz
                                     Number of · ·
                                     Distance between
                                                                                                                                  d value
70 5.0, 5.0, 5.0 WAT DxDyDz
```

When using Bladed-style controllers, distinct

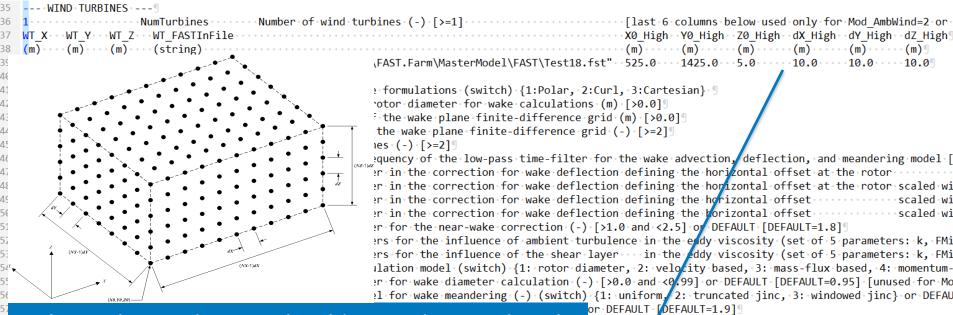
controllers are required for each turbine

71 DEFAULT WAT ScaleBox

72 DEFAULT · · · · · · · WAT k Def · · ·

73 DEFAULT WAT k Grad Calibrated para

· · · · · Flag to scale t


Calibrated para

NREL | 50

FAULT=Fa

d turbul

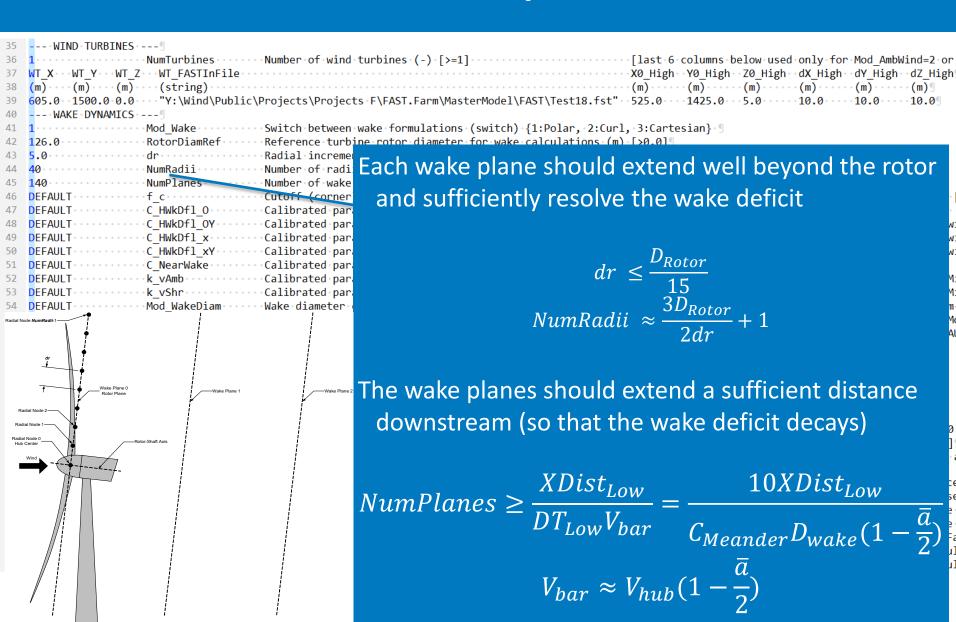
d∙turbul

High-resolution domain should extend around each wind turbine

High-resolution spatial resolution should be sufficient for turbulent wind excitation

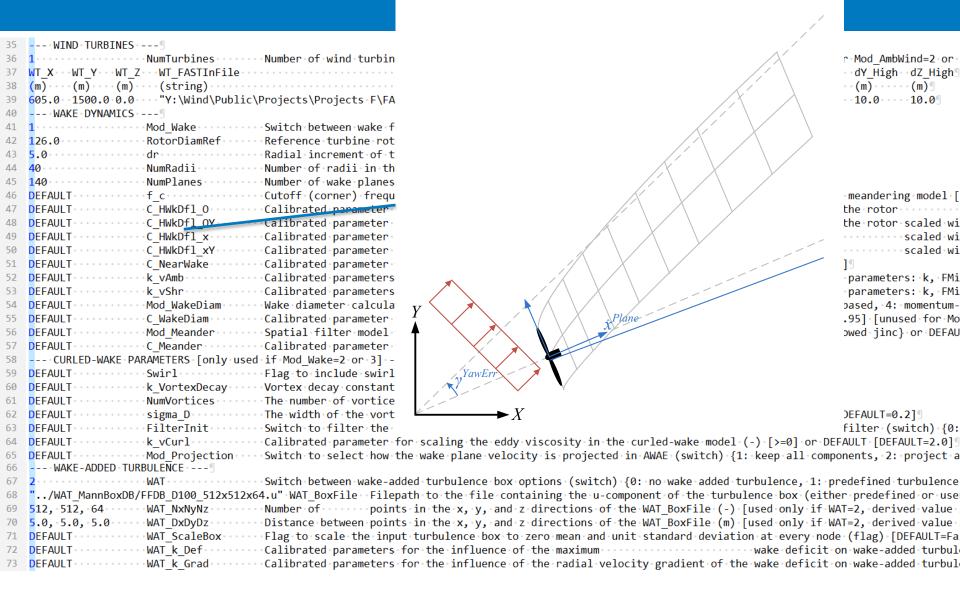
$$DS_{High} \leq c_{max}$$

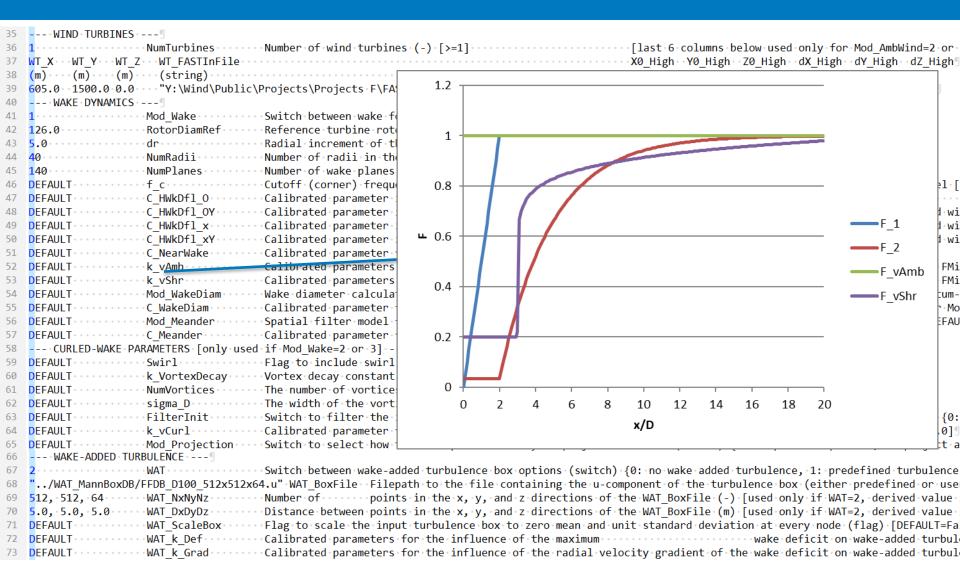
 c_{max} = max chord length S = X, Y, or Z DEFAULT 100] ¶
n-dimesionalized by rotor diameter (-) [DEFAULT=0.2] ¶
elect the number of grid points for the filter (switch) {0:

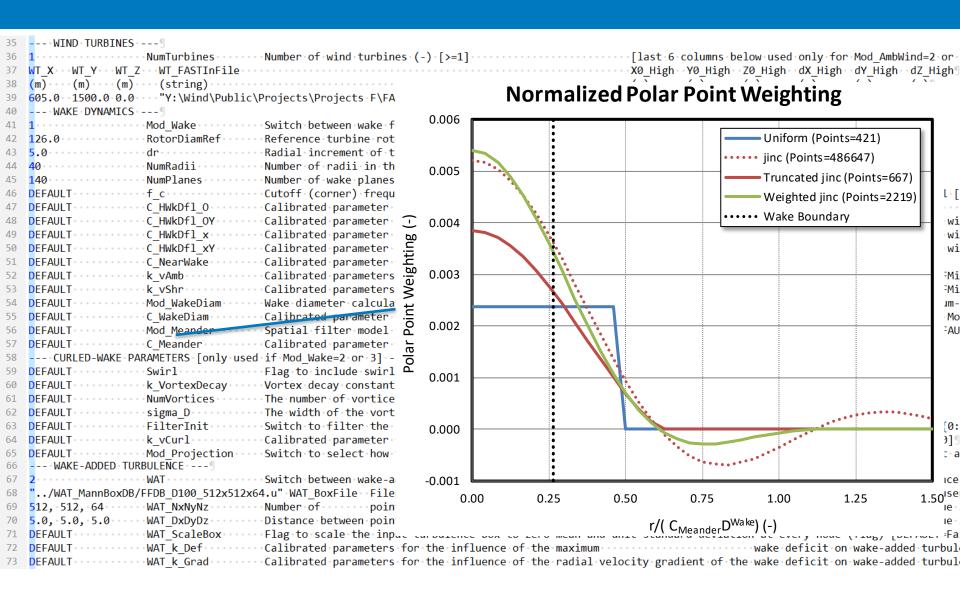

ULT=TRUE1

n the curled-wake model (-) [>=0] or DEFAULT [DEFAULT=2.0] cted in AWAE (switch) {1: keep all components, 2: project a

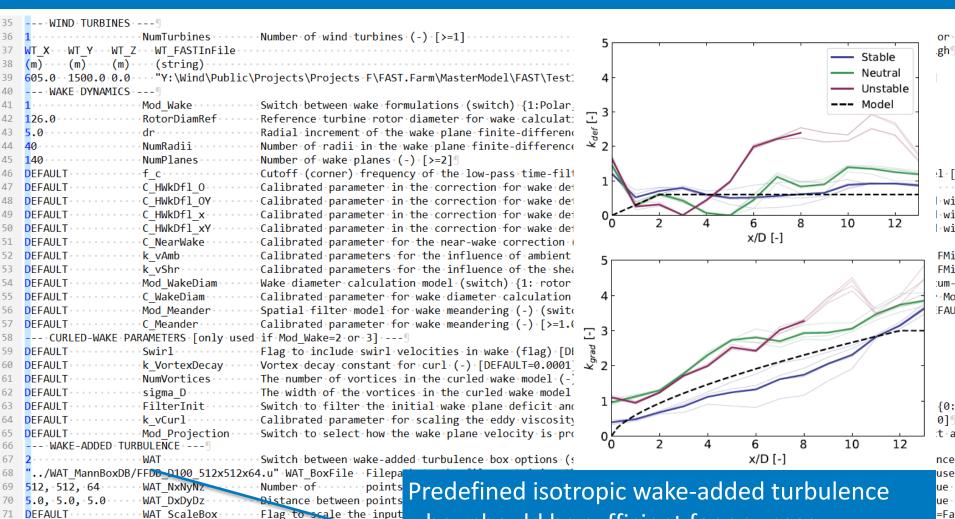
tch) {0: no wake added turbulence, 1: predefined turbulence u-component of the turbulence box (either predefined or use of the WAT_BoxFile (-) [used only if WAT=2, derived value of the WAT_BoxFile (m) [used only if WAT=2, derived value and unit standard deviation at every node (flag) [DEFAULT=Fame wake deficit on wake added turbul velocity gradient of the wake deficit on wake added turbul


```
--- WIND TURBINES --- 9
   1 NumTurbines Number of wind turbines (-) [>=1] [last 6 columns below used only for Mod AmbWind=2 or
   WT X WT Y WT Z WT FASTInFile X0 High dX High dY High dZ High
   (m) (m) (m) (string) (m) (m) (m) (m)
   605.0 1500.0 0.0 "Y:\Wind\Public\Projects\Projects F\FAST.Farm\MasterModel\FAST\Test18.fst" 525.0 1425.0 5.0 10.0 10.0 10.0 10.0
   --- WAKE DYNAMICS ---
                                    Switch between wake formulations (switch) {1:Polar, 2:Curl, 3:Cartesian} • •
   126.0 Roto DiamRef
                                    Reference turbine rotor diameter for wake calculations (m) [>0.0]
                                    Radial increment of the wake plane finite-difference grid (m) [>0.0]
43
   40 · · · · · NumRadii
                                    Number of radii in the wake plane finite-difference grid (-) [>=2]
   140 NumPlanes
                                    Number of wake planes (-) [>=2]
   DEFAULT c ---- f c ---
                                    Cutoff (corner) frequency of the low-pass time-filter for the wake advection, deflection, and meandering model [
          Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor
  DEFAULT .... C HWkDfl 0
                                    Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor scaled wi
  DEFAULT C HWkDfl x
                                    Calibrated parameter in the correction for wake deflection defining the horizontal offset ..... scaled wi
50 DEFAULT · · · · · · · · C HWkDfl xY
                                    Calibrated parameter in the correction for wake deflection defining the horizontal offset
                                    Calibrated parameter for the near-wake correction (-) [>1.0 and <2.5] or DEFAULT [DEFAULT=1.8]
51 DEFAULT ..... C NearWake
52 DEFAULT · · · · · · · k vAmb
                                     Calibrated parameters for the influence of ambient turbulence in the eddy viscosity (set of 5 parameters: k, FMi
53 DEFAULT · · · · · · · · k vShr · · · · ·
                                     Calibrated parameters for the influence of the shear layer \cdots in the eddy viscosity (set of 5 parameters: k, FMi
          ···· Mod WakeDiam
                                    Wake diameter calculation model (switch) {1: rotor diameter, 2: velocity based, 3: mass-flux based, 4: momentum-
  DEFAULT .... C WakeDiam
                                    Calibrated parameter for wake diameter calculation (-) [>0.0 and <0.99] or DEFAULT [DEFAULT=0.95] [unused for Mo
                                    Spatial filter model for wake meandering (-) (switch) {1: uniform, 2: truncated jinc, 3: windowed jinc} or DEFAU
  DEFAULT Mod Meander
57
   DEFAULT .... C Meander
                                     Calibrated parameter for wake meandering (-) [>=1.0] or DEFAULT [DEFAULT=1.9]
                                     \f Mod Wake=2 or 3] ----
   --- CURLED-WAKE PARAMETERS [only used
                                    Flag to include swirl velocities in wake (flag) [DEFAULT=TRUE]
  DEFAULT Swirl Swirl
  DEFAULT k VortexDecay
                                    Voltex decay constant for curl (-) [DEFAULT=0.0001]
          ····NumVortices
                                    The number of vortices in the curled wake model (-) [DEFAULT=100]
  DEFAULT sigma D
                                    The vidth of the vortices in the curled wake model non-dimesionalized by rotor diameter (-) [DEFAULT=0.2]
                                    Switch to filter the initial wake plane deficit and select the number of grid points for the filter (switch) {0:
          ····FilterInit
   DEFAULT .... k vCurl
                                    Calibrated parameter for scaling the eddy viscosity in the curled-wake model (-) [>=0] or DEFAULT [DEFAULT=2.0]
64
                                    Switch to select how the wake plane velocity is projected in AWAE (switch) {1: keep all components, 2: project a
   DEFAULT Mod Projection
   --- WAKE-ADDED TURBULENCE --- 9
   2 · · · · · · · · · · · · · · · · WAT · · · · · · · · · · · ·
                                    Switch between wake-added turbulence box options (switch) {0: no wake added turbulence, 1: predefined turbulence
67
   "../WAT MannBoxDB/FFDB D100 512x512x64.u" WAT BoxFile Filepath to the file containing the u-component of the turbulence box (either predefined or use
69 512, 512, 64 ····· WAT NxNyNz
                                    Number of
                                    Distance betwee Mod_Wake — Wake formulation:
70 5.0, 5.0, 5.0 WAT DxDyDz
71 DEFAULT WAT ScaleBox Flag to scale t
DEFAULT WAT_k_Def Calibrated para 1) Polar
                                                  2) Curl
```


3) Cartesian (curl without vortices)




```
--- WIND TURBINES --- 9
   1 NumTurbines Number of wind turbines (-) [>=1] [last 6 columns below used only for Mod AmbWind=2 or
  WT X WT Y WT Z WT FASTInFile X0 High dX High dY High dZ High
   (m) (m) (m) (string) (m) (m) (m) (m) (m)
   605.0 1500.0 0.0 "Y:\Wind\Public\Projects\Projects F\FAST.Farm\MasterModel\FAST\Test18.fst" 525.0 1425.0 5.0 10.0 10.0 10.0 10.0
   --- WAKE DYNAMICS ---
   126.0 RotorDiamRef Reference turbine rotor diameter for wake calculations (m) [>0.0]
   5.0 dr Radial increment of the wake plane finite-difference grid (m) [>0.0]
   40 ···· NumRadii ··· Number of radii in the wake plane finite-difference grid (-) [>=2]
  140 NumPlanes Number of wake planes (-) [>=2]
  DEFAULT for the wake advection, deflection, and meandering model [
         Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor
  DEFAULT .... C HWkDfl OY
                                  Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor scaled wi
  DEFAULT C HWkDfl x
                                  Calibrated parameter in the correction for wake deflection defining the horizontal offset ..... scaled wi
50 DEFAULT ..... C HWkDfl xY
                                  Calibrated parameter in the correction for wake deflection defining the horizontal offset ...... scaled wi
                                  Calibrated parameter for the near-wake correction (-) [>1.0 and <2.5] or DEFAULT [DEFAULT=1.8]
51 DEFAULT ..... C NearWake
52 DEFAULT · · · · · · · · k vAmb · · · ·
                                  Calibrated parameters for the influence of ambient turbulence in the eddy viscosity (set of 5 parameters: k, FMi
53 DEFAULT · · · · · · · · k vShr · · · · ·
                                  Calibrated parameters for the influence of the shear layer \cdots in the eddy viscosity (set of 5 parameters: k, FMi
  DEFAULT Mod WakeDiam
                                  Wake diameter calculation model (switch) {1: rotor diameter, 2: velocity based, 3: mass-flux based, 4: momentum-
  DEFAULT C WakeDiam
                                  Calibrated parameter for wake diameter calculation (-) [>0.0 and <0.99] or DEFAULT [DEFAULT=0.95] [unused for Mo
                                  Spatial filter model for wake meandering (-) (switch) {1: uniform, 2: truncated jinc, 3: windowed jinc} or DEFAU
  DEFAULT ----- Mod Meander
57
  DEFAULT .... C Meander
                                  Calibrated parameter for wake meandering (-) [>=1.0] or DEFAULT [DEFAULT=1.9]
   --- CURLED-WAKE PARAMETERS [only used]
                                  if Mod Wake=2 or 3] ----
                                  lag to include swirl velocities in wake (flag) [DEFAULT=TRUE]
  DEFAULT Swirl
                                  Vortex decay constant for curl (-) [DEFAULT=0.0001]
  DEFAULT k VortexDecay
         ····NumVortices
                                  The number of vortices in the curled wake model (-) [DEFAULT=100]
  DEFAULT sigma D
                                  The width of the vortices in the curled wake model non-dimesionalized by rotor diameter (-) [DEFAULT=0.2]
          ····FilterInit
                                  Switch to filter the initial wake plane deficit and select the number of grid points for the filter (switch) {0:
              ····k vCurl
                                  Calibrated parameter for scaling the eddy viscosity in the curled-wake model (-) \cdot [>=0] or DEFAULT [DEFAULT=2.0]
   DEFAULT Mod Projection
                                  Switch to select how the wake plane velocity is projected in AWAE (switch) {1: keep all components, 2: project a
   --- WAKE-ADDED TURBULENCE --- 9
   2 · · · · · · · · · · · · · · · · WAT · · · · · · · · · · · ·
                                  Switch between wake-added turbulence box options (switch) {0: no wake added turbulence, 1: predefined turbulence
   "../WAT MannBoxDB/FFDB D100 512x512x64.u" WAT BoxFile Filepath to the file containing the u-component of the turbulence box (either predefined or use
69 512, 512, 64 ······ WAT NxNyNz
                                  Number of \setminus points in the x, y, and z directions of the WAT BoxFile (-) [used only if WAT=2, derived value
70 5.0, 5.0, 5.0 WAT DxDvDz
                                  Distance between points in the x, y, and z directions of the WAT BoxFile (m) [used only if WAT=2, derived value
71 DEFAULT WAT ScaleBox Flag to scale t
                                                                                                                       DEFAULT=Fa
                                                Calibration parameters effecting wake dynamics
72 DEFAULT WAT k Def Calibrated param
                                                                                                                       dded∙turbul
73 DEFAULT WAT k Grad Calibrated para
                                                                                                                       dded turbul
                                                  that could be calibrated better for a given case
```


FAST Francis Indiana Eile


```
--- WIND TURBINES ---
       NumTurbines Number of wind turbines (-) [>=1] [last 6 columns below used only for Mod AmbWind=2 or
    WT X WT Y WT Z WT FASTInFile X0 High dX High dY High dZ High
                                          (m) (m)
    (m) · · · (m) · · · (string) ·
    605.0 1500.0 0.0 "Y:\Wind\Public\Projects\Projects F\FAST.Farm\MasterModel\FAST\Test18.fst" 525.0 1425.0 5.0 10.0 10.0 10.0 10.0
      -- WAKE DYNAMICS ---
    126.0 RotorDiamRef Reference turbine rotor diameter for wake calculations (m) [>0.0]
                                                   Radial increment of the wake plane finite-difference grid (m) [>0.0]
    40 · · · · NumRadii · · ·
                                                   Number of radii in the wake plane finite-difference grid (-) [>=2]
    140 · · · · · NumPlanes · ·
                                           ·····Number of wake planes (-) [>=2]
    DEFAULT .... f c
                                                   Cutoff (corner) frequency of the low-pass time-filter for the wake advection, deflection, and meandering model [
                                                   ·Calibrated parameter in the correction for wake deflection defining the horizontal offset at the rotor
                        ····C HWkDfl 0
              ·····C HWkDfl OY
                                                   Calibrated parameter in the correction for wake deflection da
              ····················C HWkDfl x
                                                   Calibrated parameter in the correction for wake deflection d
                      · · · · · C HWkDfl xY
                                                   ·Calibrated parameter in the correction for wake deflection d
                                                                                                                                                                                         -wi
50
              ..... C NearWake
                                                   Calibrated parameter for the near-wake correction (-) [>1.0
52 DEFAULT · · · · · · · · k vAmb · · · ·
                                            Calibrated parameters for the influence of ambient turbulence
                                                                                                                                                                                         FMi
53 DEFAULT
                      ····k vShr·
                                                   Calibrated parameters for the influence of the shear layer
                                                                                                                                                                                         FMi
                         --Mod WakeDiam
                                                   Wake diameter calculation model (switch) {1: rotor diameter,
                     ····C WakeDiam
                                                   Calibrated parameter for wake diameter calculation (-) [>0.0
                      · · · · · Mod Meander
                                                   Spatial filter model for wake meandering (-) (switch) {1: un
                                                                                                                                                                                         FAU
57
    DEFAULT .... C Meander
                                                   Calibrated parameter for wake meandering (-) [>=1.0] or DEFA
    --- CURLED-WAKE PARAMETERS [only used if Mod Wake=2 or 3] --- 9
                                                   Flag to include swirl velocities in wake (flag) [DEFAULT=TRU
                     ·····Swirl····
                                                   Vortex decay constant for curl (-) [DEFAULT=0.0001]
                     ····k VortexDecay
                        --- NumVortices
                                                   The number of vortices in the curled wake model (-) [DEFAULT
                         · sigma D
                                                   The width of the vortices in the curled wake model non-dimes
                           FilterInit
                                                   Switch to filter the initial wake plane deficit and select t
                                                                                                                                                                                         {0:
                         ··k vCurl
                                                   Calibrated parameter for scaling the eddy viscosity in the c
    DEFAULT Mod Projection
                                                   Switch to select how the wake plane velocity is projected in
                                                                                                                                                                                         ∶t⊸a
    --- WAKE-ADDED TURBULENCE ---
    2 - - - - - - - - - - - - WAT - - - - - -
                                                   Switch between wake-added turbulence box options (switch) {0
                                                                                                                                                                                         nce
    "../WAT MannBoxDB/FFDB D100 512x512x64.u" WAI BoxFile Filepath to the file containing the u-compo
                                                                                                                                                                                         use
                                                   Number of points in the x, y, and z directions of the
    512, 512, 64 WAT NxNyNz
                                                   Distance between points
   5.0, 5.0, 5.0 WAT DxDyDz
                                                                                                                                                                                         ue
                                                   Flag to scale the input
71 DEFAULT .... WAT ScaleBox
                                                                                                                                                                                         =Fa
                                                   calibrated parameters of Curled Default curled wake parameters should
                                                                                                                                                                                         bul
72 DEFAULT .... WAT k Def
73 DEFAULT · · · · · · · WAT k Grad
                                                   Calibrated parameter
                                                                                                                                                                                         bul
                                                                                be OK, although k_VortexDecay and k_vCurl
                                                                                could be calibrated better for a given case
```


· · · · · · · · WAT k Def

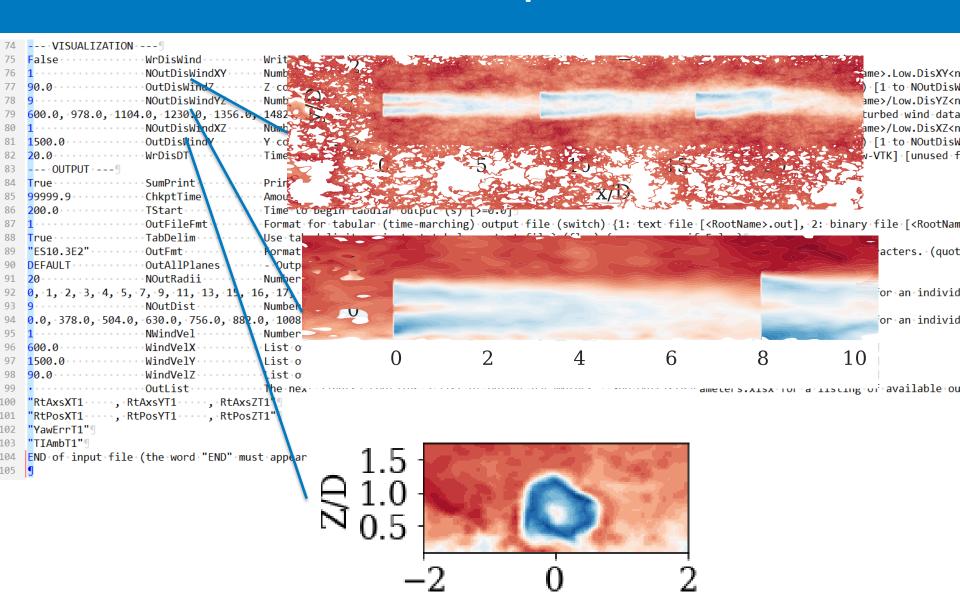
73 DEFAULT WAT k Grad

Calibrated parameters f

Calibrated parameters

box should be sufficient for any case WAT_k_Def and WAT_k_Grad could b calibrated better for a given case

bul

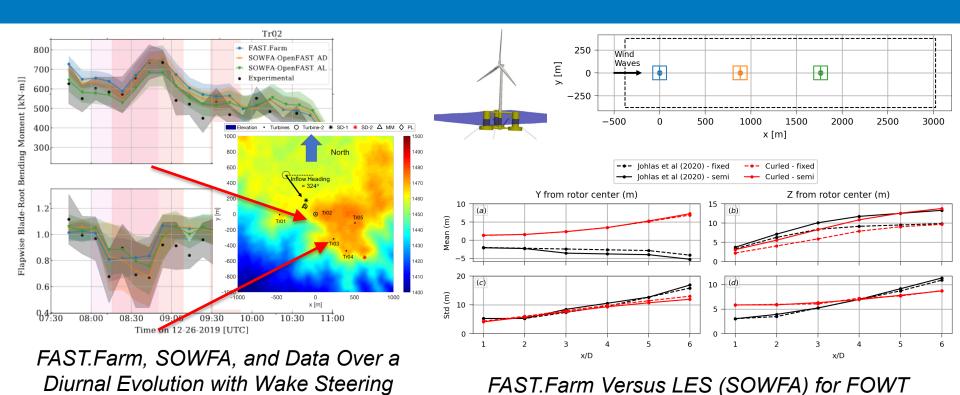

bul

```
74 --- VISUALIZATION --- 9
     False WrDisWind Write low- and high-resolution disturbed wind data to <RootName>.Low.Dis.t<n>.vtk etc.? (flag)
     1 NOutDisWindXY Number of XY planes for output of disturbed wind data across the low-resolution domain to <RootName>.Low.DisXY<n
     90.0 OutDisWindZ Z coordinates of XY planes for output of disturbed wind data across the low-resolution domain (m) [1 to NOutDisw
     9 NOutDisWindYZ Number of YZ planes for output of disturbed wind data across the low-resolution domain to <RootName>/Low.DisYZ<n
78
     600.0, 978.0, 1104.0, 1230.0, 1356.0, 1482.0, 1608.0, 1734.0, 1860.0 OutDisWindX X coordinates of YZ planes for output of disturbed wind data
    1 NoutDisWindXZ Number of XZ planes for output of disturbed wind data across the low-resolution domain to <RootName>/Low.DisXZ<n
80
     1500.0 OutDisWindY Y coordinates of XZ planes for output of disturbed wind data across the low-resolution domain (m) [1 to NOutDisw
     20.0 WrDisDT Time step for disturbed wind visualization output (s) [>0.0] or DEFAULT [DEFAULT=DT Low or DT Low-VTK] [unused f
82
     --- OUTPUT ---- ¶
83
84 True SumPrint Print summary data to <RootName>.sum? (flag)
     99999.9 ChkptTime Amount of time between creating checkpoint files for potential restart (s) [>0.0]
85
     200.0 TStart Time to begin tabular output (s) [>=0.0]
    1 OutFileFmt Format for tabular (time-marching) output file (switch) {1: text file [<RootName>.out], 2: binary file [<RootName>.out], 3: binary file [<RootName>.out]
87
88
     True TabDelim Use tab delimiters in text tabular output file? (flag) {uses spaces if False}
     "ES10.3E2" OutFmt Format used for text tabular output, excluding the time channel. Resulting field should be 10 characters. (quot
     DEFAULT ------Output all wake planes at all time steps. [DEFAULT=False]
     91
     0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 18, 19, 21, 24, 28, 33, 39 OutRadii List of radial nodes
     9 NoutDist Number of downstream distances for wake output for an individual rotor (-) [0 to 9 ]
93
     0.0, 378.0, 504.0, 630.0, 756.0, 882.0, 1008.0, 1134.0, 1260.0 OutDist List of downstream distances for wake output for an individ
94
95
     600.0 WindVelX List of coordinates in the X direction for wind output (m) [1 to NWindVel] [unused for NWindVel=0]
97 1500.0 WindVelY List of coordinates in the Y direction for wind output (m) [1 to NWindVel] [unused for NWindVel=0]
    90.0 WindVelZ List of coordinates in the Z direction for wind output (m) [1 to NWindVel] [unused for NWindVel=0]
98
    • OutList The next line(s) contains a list of output parameters. See OutListParameters.xlsx for a listing of available output
99
100
     "RtAxsXT1 , RtAxsYT1 , RtAxsZT1"
101 "RtPosXT1 , RtPosYT1 , RtPosZT1"
     "YawErrT1"
103 "TIAmbT1"¶
[/Lost - 104 | END of input file (the word "END" must appear in the first 3 columns of this last OutList line
```

105

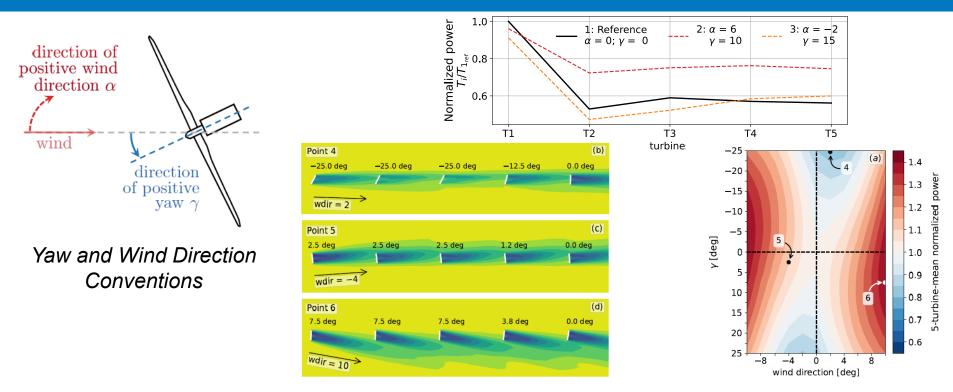
```
--- VISUALIZATION --- 9
                    wrDisWind · · · · · Write low- and high-resolution disturbed wind data to <RootName>.Low.Dis.t<n>.vtk etc.? (flag) المارة
     ----NOutlisWindXY
                                     Number of XY planes for output of disturbed wind data across the low-resolution domain to <RootName>.Low.DisXY<n
       OutDisWindZ Outport Z coordinates of XY planes for output of disturbed wind data across the low-resolution domain (m) [1 to NOutDisk
   9 ..... NOutDi WindYZ .... Number of YZ planes for output of disturbed wind data across the low-resolution domain to <RootName>/Low.DisYZ<n
78
   600.0, 978.0, 1104.0, 1230 0, 1356.0, 1482.0, 1608.0, 1734.0, 1860.0 OutDisWindX X coordinates of YZ planes for output of disturbed wind data
   1 NOutDisWindXZ Number of XZ planes for output of disturbed wind data across the low-resolution domain to <RootName>/Low.DisXZ<n
80
   1500.0 OutDisWindY
                                   ··Y coordinates of XZ planes for output of disturbed wind data across the low-resolution domain (m) [1 to NOutDisk
                  WrDisDT
                                     Time step for disturbed wind visualization output (s) [>0.0] or DEFAULT [DEFAULT=DT Low or DT Low-VTK] [unused f
82
   --- OUTPUT ---- ¶
83
   True SumPrint
                                     Print summary data to <RootName>.sum? (flag)
   99999.9 · · · · · ChkptTime
                                     Amount of time between creating checkpoint files for potential restart (s) [>0.0]
85
   200.0 TStart
                                     Time to begin tabular output (s) [>=0.0]
   1 OutFileFmt
                                     Format for tabular (time-marching) output file (switch) {1: text file (RootName>.out], 2: binary file (RootName
87
                                     Use tab delimiters in text tabular output file? (flag) {uses spaces if False}
88
   True····TabDelim
   "ES10.3E2" OutFmt
                                     Format used for text tabular output, excluding the time channel. Resulting field should be 10 characters. (quot
   DEFAULT OutAllPlanes
                                    -- Output all wake planes at all time steps. [DEFAULT=False]
      ····NOutRadii
                                     Number of radial nodes · · · · · for wake output for an individual rotor (-) [0 to 20]
91
   🐧, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 10, 17, 18, 19, 21, 24, 28, 33, 39 OutRadii · · · · List of radial nodes · · · · for wake output for an individ
93
        ·····NOutDist
                              Number of downstream distances for wake output for an individual rotor (-) [0 to 9 ]
   0.0, 378.0, 504.0, 630.0, 756.0, 882.0, 1008.0, 1134.0, 1260.0 OutDist List of downstream distances for wake output for an individ
94
95
     ····NWindVel
                                  Number of points for wind output (-) [0 to 9]
                                   List of coordinates in the X-direction for wind output (m) [1 to NWindVel] [unused for NWindVel=0]
96
   1500.0 WindVelY List of coordinates in the Y direction for wind output (m) [1 to NWindVel] [unused for NWindVel=0]
   90.0 WindVelZ [unused for NWindVel=0]
   OutList The next line(s) contains a list of output parameters. See OutListParameters.xlsx for a listing of available output
99
100
   "RtAxsXT1 , RtAxsYT1 , RtAxsZT1"
   "RtPosXT1 , RtPosYT1 , RtPosZT1"
101
   "YawErrT1"
103
   "TIAmbT1"
  END of input file (the word "END" must appear in the first 3 columns of this last OutList line)
105
```

Creates a lot of data!

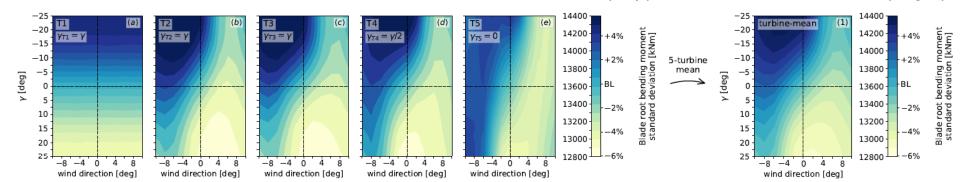

```
74 --- VISUALIZATION --- 9
     False WrDisWind Write low- and high-resolution disturbed wind data to <RootName>.Low.Dis.t<n>.vtk etc.? (flag)
     1 NOutDisWindXY Number of XY planes for output of disturbed wind data across the low-resolution domain to <RootName>.Low.DisXY<n
     90.0 OutDisWindZ Z coordinates of XY planes for output of disturbed wind data across the low-resolution domain (m) [1 to NOutDisw
     9 NOutDisWindYZ Number of YZ planes for output of disturbed wind data across the low-resolution domain to <RootName>/Low.DisYZ<n
78
     600.0, 978.0, 1104.0, 1230.0, 1356.0, 1482.0, 1608.0, 1734.0, 1860.0 OutDisWindX X coordinates of YZ planes for output of disturbed wind data
    1 NoutDisWindXZ Number of XZ planes for output of disturbed wind data across the low-resolution domain to <RootName>/Low.DisXZ<n
80
     1500.0 OutDisWindY Y coordinates of XZ planes for output of disturbed wind data across the low-resolution domain (m) [1 to NOutDisw
     20.0 WrDisDT Time step for disturbed wind visualization output (s) [>0.0] or DEFAULT [DEFAULT=DT Low or DT Low-VTK] [unused f
82
     --- OUTPUT ---- ¶
83
84 True SumPrint Print summary data to <RootName>.sum? (flag)
     99999.9 ChkptTime Amount of time between creating checkpoint files for potential restart (s) [>0.0]
85
     200.0 TStart Time to begin tabular output (s) [>=0.0]
    1 OutFileFmt Format for tabular (time-marching) output file (switch) {1: text file [<RootName>.out], 2: binary file [<RootName>.out], 3: binary file [<RootName>.out]
87
88
     True TabDelim Use tab delimiters in text tabular output file? (flag) {uses spaces if False}
     "ES10.3E2" OutFmt Format used for text tabular output, excluding the time channel. Resulting field should be 10 characters. (quot
     DEFAULT ------Output all wake planes at all time steps. [DEFAULT=False]
     91
     0, 1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 16, 17, 18, 19, 21, 24, 28, 33, 39 OutRadii List of radial nodes
     9 NoutDist Number of downstream distances for wake output for an individual rotor (-) [0 to 9 ]
93
     0.0, 378.0, 504.0, 630.0, 756.0, 882.0, 1008.0, 1134.0, 1260.0 OutDist List of downstream distances for wake output for an individ
94
95
     600.0 WindVelX List of coordinates in the X direction for wind output (m) [1 to NWindVel] [unused for NWindVel=0]
97 1500.0 WindVelY List of coordinates in the Y direction for wind output (m) [1 to NWindVel] [unused for NWindVel=0]
    90.0 WindVelZ List of coordinates in the Z direction for wind output (m) [1 to NWindVel] [unused for NWindVel=0]
98
    • OutList The next line(s) contains a list of output parameters. See OutListParameters.xlsx for a listing of available output
99
100
     "RtAxsXT1 , RtAxsYT1 , RtAxsZT1"
101 "RtPosXT1 , RtPosYT1 , RtPosZT1"
     "YawErrT1"
103 "TIAmbT1"¶
[/Lost - 104 | END of input file (the word "END" must appear in the first 3 columns of this last OutList line
```

105

Examples 1-3

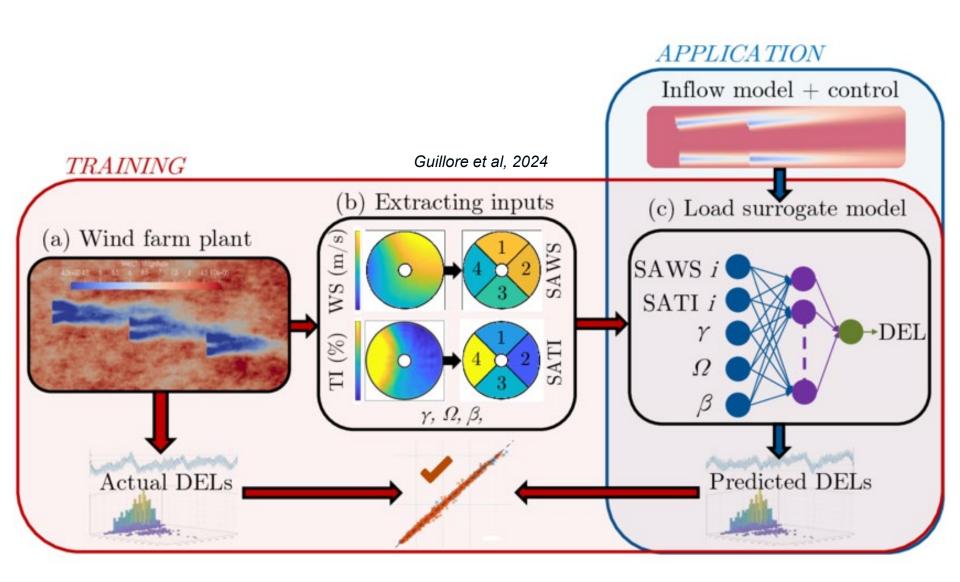

Recent FAST.Farm V&V and Applications

Recent/Ongoing FAST.Farm V&V

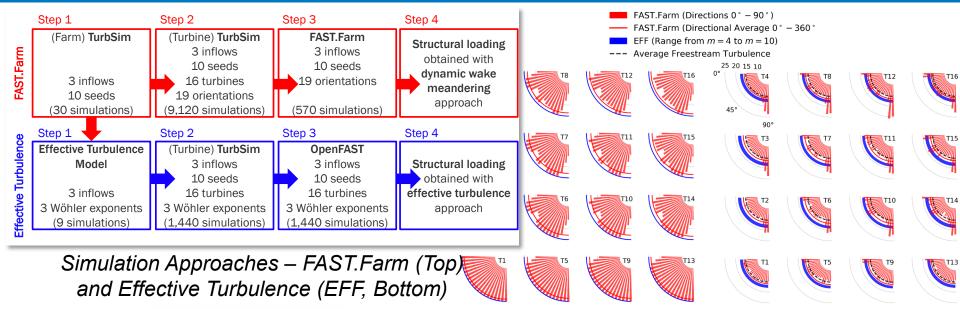


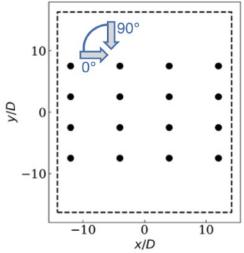
---- DWM_{NREL} --- DWM_{DTU} --- LES_{DTU} r/R = 0.925 \bar{F}_n [N/m] -200Waked-Inflow 5.6D500 WP of IEA (H) 400 Wind Task 29 300 inflow plane 1.33 D(DanAero) 1.92 D Met Mast

Recent/Ongoing Applications: Impact of Wake Steering on Loads

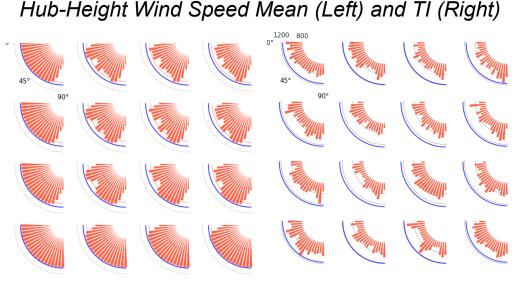


Normalized Power of Each Turbine (Top) and Five-Turbine Mean (Right)

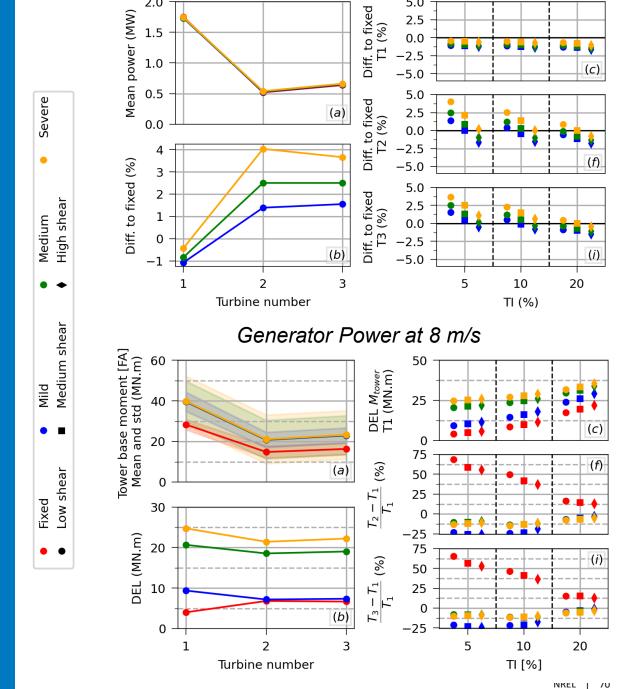



Blade-Root Bending of Each Turbine (Left) and Five-Turbine Mean (Right)

Recent/Ongoing Applications: Use of FAST.Farm for Wake-Loads Surrogate



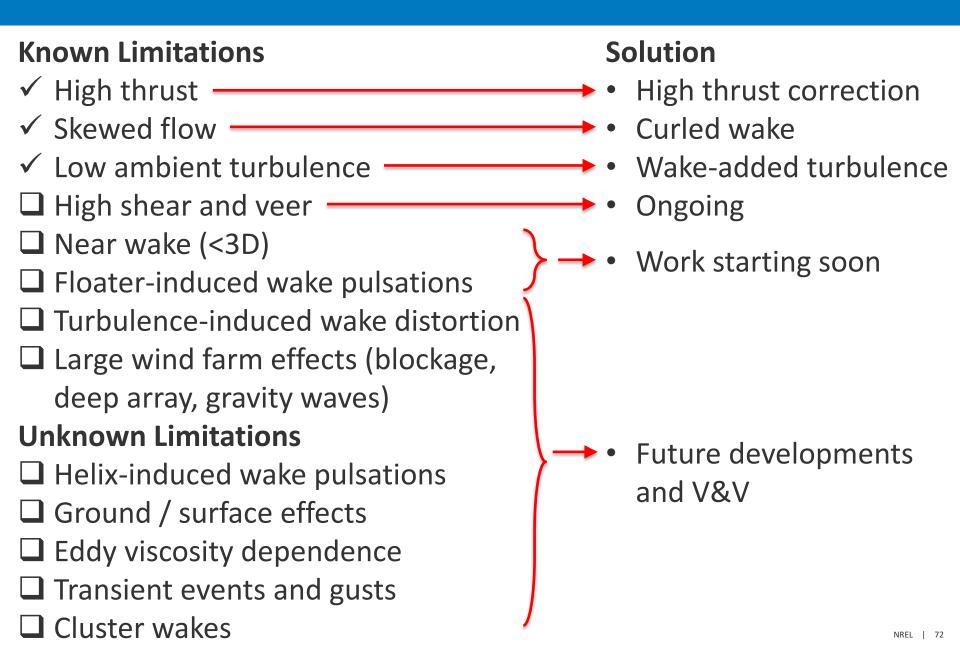
Difference in Fatigue Assessment Obtained with IEC Effective Turbulence Versus FAST.Farm


4x4, 5Dx8D Wind Farm of NREL 5-MW Turbines

Blade-Root Bending Mean (Left) and Std. (Right) 69

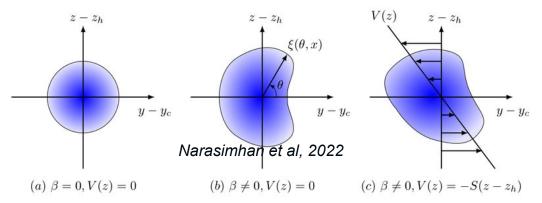
Use of FAST.Farm for FOWT-Wake **Interactions**

- **FOWT-wake interactions** explored for a small farm
- Results dictated by interplay of:
 - Wind and wave-induced floater motion
 - Heel angle of floater
 - Shift of tower natural frequency

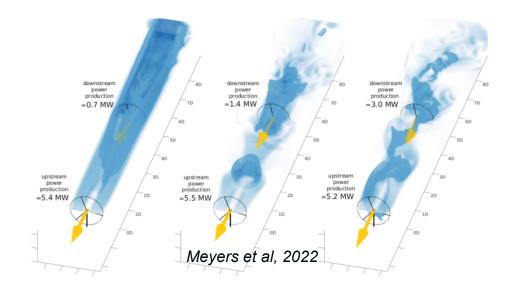

Tower-Base Moment at 8 m/s

5.0

2.0

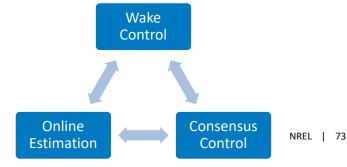

Outlook

FAST.Farm Accuracy Gaps



Future Pathways – Improved Physics

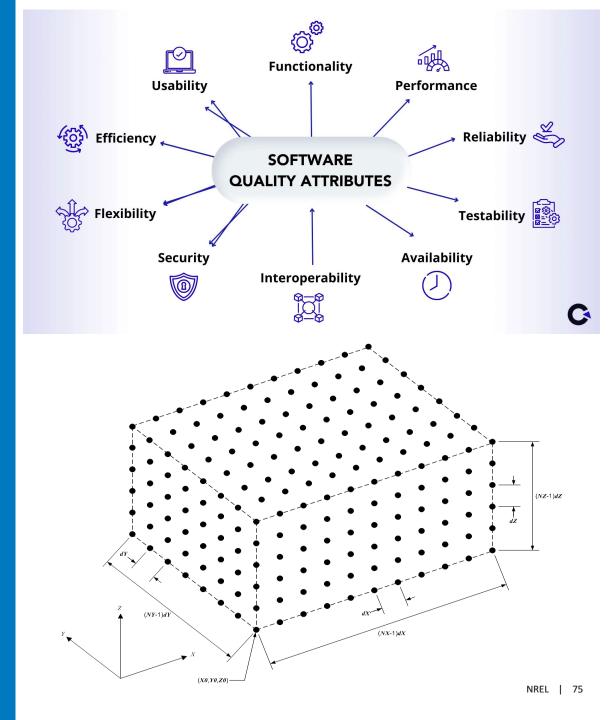
- ✓ Improvements for high shear and veer
- ☐ Ground / surface effects
- Near-to-far wake transition
- ☐ Turbulence-induced wake distortion
- ☐ Improved eddy-viscosity formulation
- ☐ Improved wake dynamics for FOWT
- Helix-induced pulsations
- Improved transient events
- Wind Farms with different turbines
- Wave-excitation of shared moorings
- ☐ Large-farm effects (blockage, deep array)
- Cluster wakes
- ✓ Reference super controller
- ☐ Farm-Level LiDAR



Wakes Without and With Skew and Veer

Baseline, Pulsed, and Helix Wake Control

Future Pathways – Computational Efficiency


- ✓ Improve integrator in the curled wake model
- ✓ Partitioned lowresolution domain
- ✓ Ambient wind data in alternative format
- ✓ Regions of wake influence
- ☐ Hybrid inflow generation
- ☐ MPI parallelization

Future Pathways – Usability

- ✓ Develop loads surrogates
- ☐ Decouple hub height from grid in TurbSim
- ☐ Alignment of domains with wind direction
- ☐ Support to shut off specific turbines
- Overhaul theOpenFAST Toolbox
- ☐ TurbSim/FAST.Farm domain misalignment warnings
- ☐ Spatial-temporal discretization defaults

Carpe Ventum!

Access FAST.Farm @: https://github.com/OpenFAST

Jason Jonkman, Ph.D. +1 (303) 384 – 7026 jason.jonkman@nrel.gov

www.nrel.gov

This work was authored by the NREL for the U.S. Department of Energy (DOE), operated under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

