

Outline

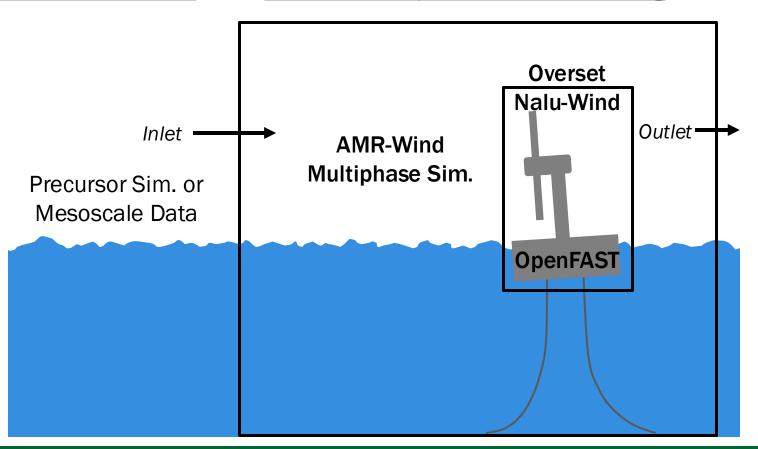
- For context: Overview of ExaWind software suite
 - Individual codes and framework
 - Applications and capabilities

- AMR-Wind
 - Features
 - Anatomy of input file
 - Tutorial
 - Installation
 - o ABL
 - Actuator Disk

Exawind software suite

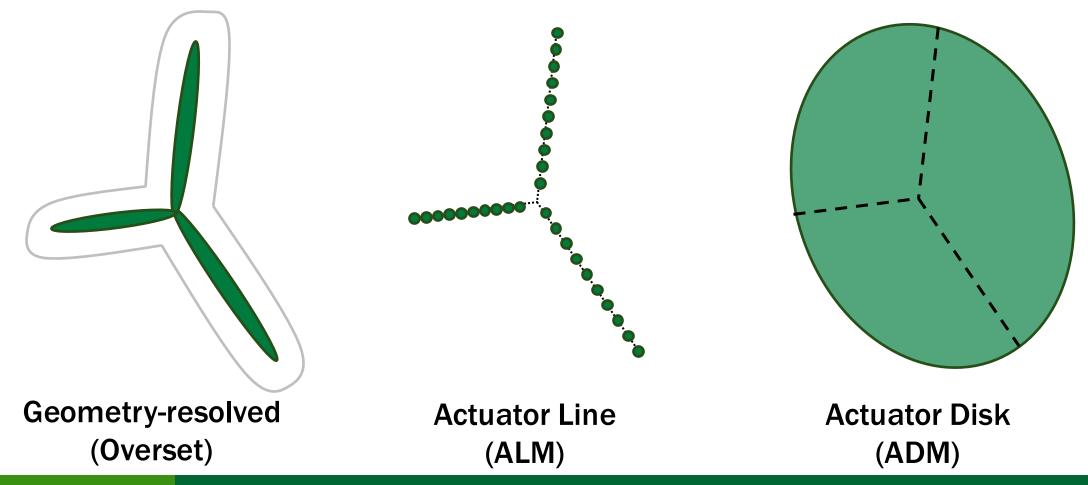
- Primary target of development: geometry-resolved floating offshore wind simulations
- In the process, provide a versatile, open-source modeling tool for wind energy researchers with <u>high-fidelity fluid mechanics</u> and <u>multi-fidelity turbine modeling</u>

AMR-Wind:

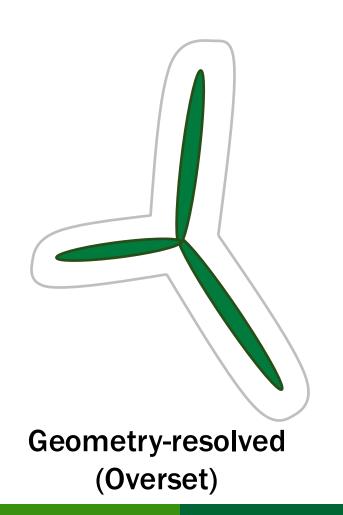

structured mesh, bulk of computational volume

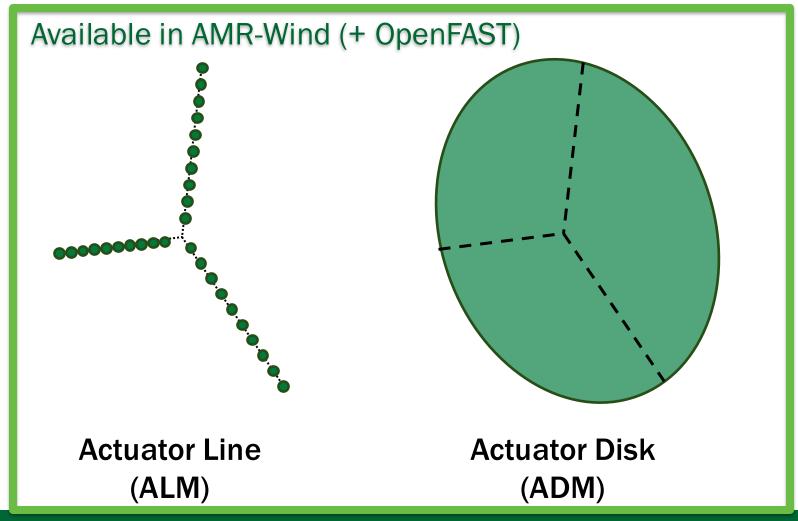
Nalu-Wind:

unstructured mesh, nearbody flow dynamics


OpenFAST:

structural modeling


Exawind software suite


Versatile, open-source, high-fidelity fluid mechanics and multi-fidelity turbine modeling

Exawind software suite

Versatile, open-source, high-fidelity fluid mechanics and multi-fidelity turbine modeling

AMR-Wind

- Repository
 - https://github.com/Exawind/amr-wind
- Documentation
 - https://exawind.github.io/amr-wind/
 - Walkthrough
 - User Manual
 - Capabilities and Roadmap
 - Input file reference
 - Theory Manual
 - Developer Documentation
- Regression tests can serve as example input files
 - test/test_files

AMR-Wind documentation intro

- Documentation
 - https://exawind.github.io/amr-wind/
 - User Manual
 - Capabilities and Roadmap
 - Input file reference
 - Post-processing examples

- File: "case_name.inp" or "case_name.i"
- Syntax (in general):

```
Category = Entry1 Entry2 Entry3
```

Entry1.option1 = Value1

Entry2.option2 = Value2

- Spacing and indentation do not matter
- Comment with '#'

- Physics
 - Flow initialization and changing environment during simulation
 - Can connect distinct parts of the code, like forcing and boundary conditions
 - This is the "case" that you are running; but also, can specify more than one because they can address different aspects of the simulation
 - E.g., FreeStream, ABL, Actuator, TaylorGreenVortex

- ICNS.source_terms
 - ICNS = InCompressible Navier-Stokes, i.e., the momentum equation
 - E.g., BoussinesqBuoyancy, CoriolisForcing, ABLForcing

- Domain
 - Due to block-structured nature, all domains are rectangular
 - Define bottom corner position, top corner position, number of cells in each direction for base resolution
 - geometry.prob_lo, geometry.prob_hi, amr.n_cell
- Boundary conditions
 - Specify type for each: xlo, xhi, ylo, etc.
 - Additional values depending on type
 - Should not be specified in periodic direction: geometry.is_periodic
- Time stepping
 - time.fixed_dt, time.initial_dt, time.cfl
 - Set negative value to make inactive

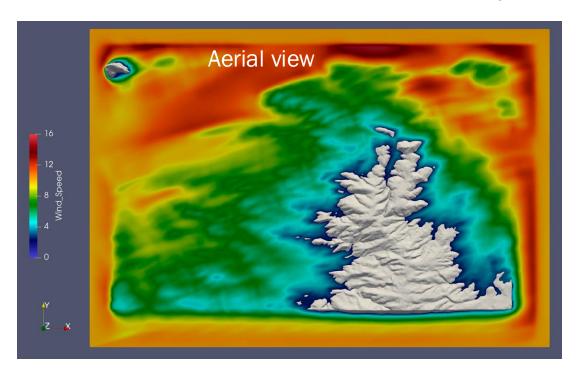
prob_hi

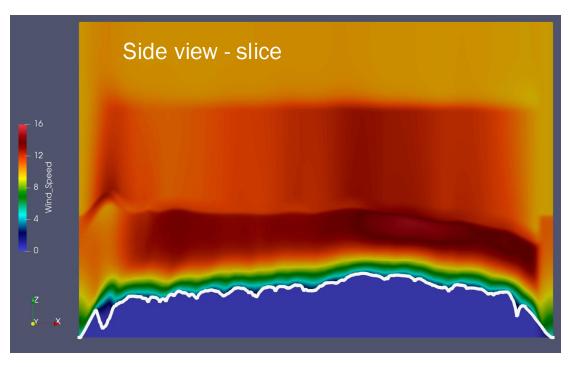
- Checkpoints: output with time.checkpoint_interval, use with io.restart_file
- Plotfiles: output with time.plot_interval, can specify non-default and derived variables
- Postprocessing
 - Targeted tools to extract specific quantities and output to data files
 - E.g., ABLStats, Sampling, Averaging
- Mesh refinement
 - Add levels by specifying amr.max_level > 0
 - 2 primary methods for static refinement:
 - CartBoxRefinement: define inset rectangular domains
 - GeometryRefinement: define shapes (cylinders, boxes) with parameters

AMR-Wind: Walkthrough

- https://exawind.github.io/amr-wind/walkthrough/
- Typical workflow
 - Compiling
 - Precursor (ABL)
 - Turbine (Actuator disk)

AMR-Wind: Walkthrough

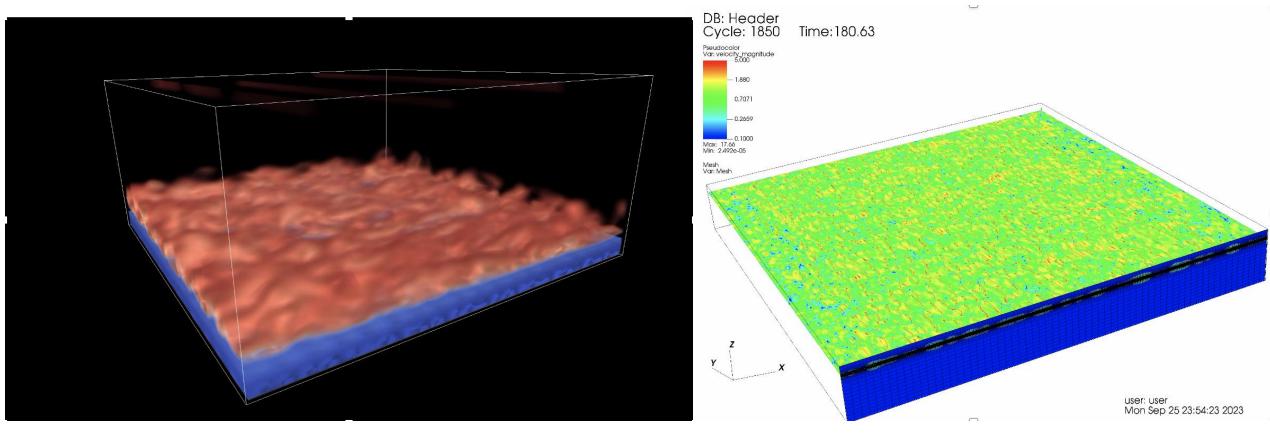

Pause for questions, discussion


AMR-Wind: Walkthrough

- https://exawind.github.io/amr-wind/walkthrough/
- Other walkthrough components
 - Complex Terrain
 - Actuator-line method (ALM) calibration

AMR-Wind: New features

- Complex terrain capabilities Immersed Boundary Model
 - Forces velocity toward zero within terrain boundary
 - Turns on wall model in proximity to terrain boundary



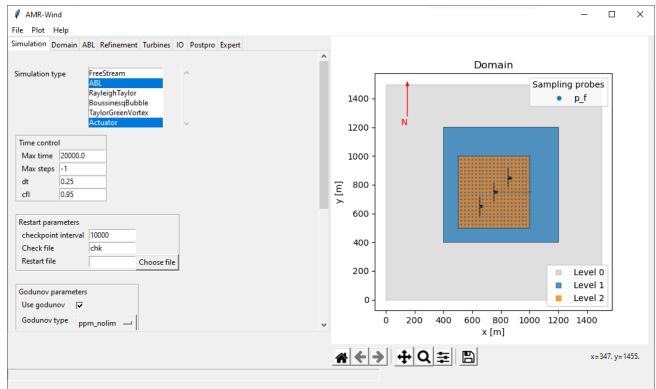
Harish Gopalan

AMR-Wind: New features

- ABL + waves
 - Wave forcing and dissipation zones

Monochromatic linear waves with ABL flow

Irregular waves

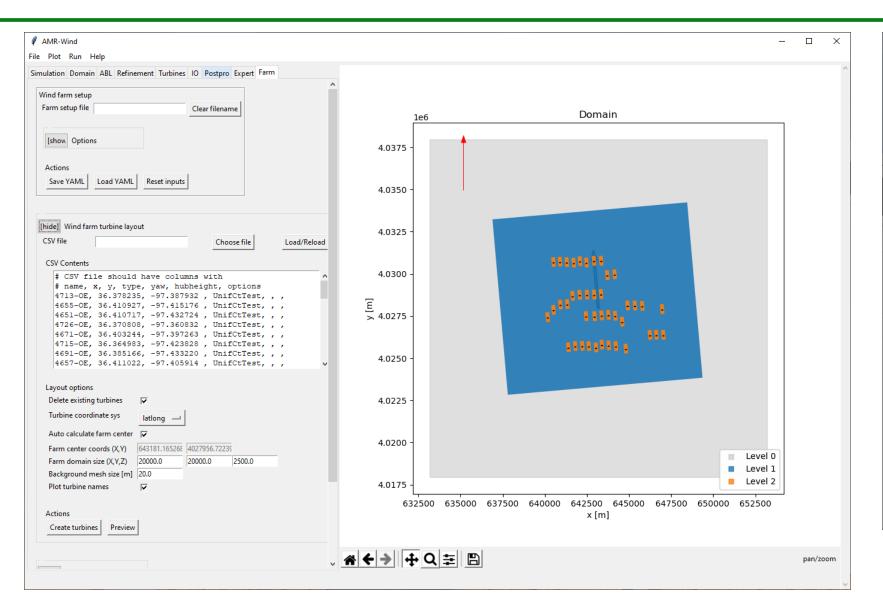

AMR-Wind: New features

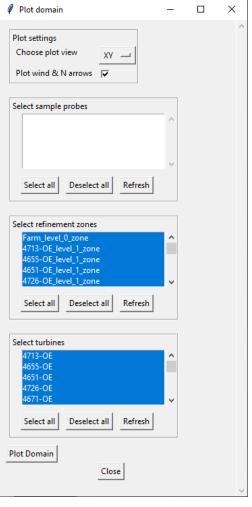
- To be invited to quarterly meetings, join our mailing list!
 - Send a request to <u>amr-wind-maintainers@groups.nrel.gov</u>
 - (this email is also listed in the github README)
 - Summary of software updates
 - Usability
 - New features
 - Bug fixes
 - Provide feedback
 - Discuss with other users

AMR-Wind-frontend overview

Handy GUI & python interface to help setup complex cases

- Load an AMR-Wind input file and change parameters interactively
- Plot the simulation domain, including refinement zones and sampling probes/planes
- Set up complex wind farm configurations
- Validate AMR-Wind inputs before job submissions
- Submit jobs to a cluster
- Visualize the sampling outputs (probes, lines, and planes)
- Postprocess ABL statistics files
- Use it in Jupyter notebooks or python scripts to automate processing


AMR-Wind frontend: Installation & Documentation


AMR-Wind frontend documentation available at https://github.com/Exawind/amr-wind-frontend/tree/main/docs

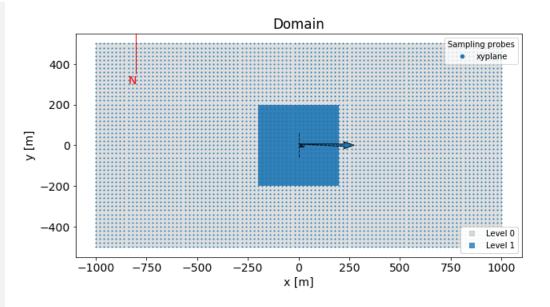
Contains installation, usage, and customization instructions

- Three tutorials available:
 - 1. An actuator disk model in uniform flow
 - 2. Running an unstable ABL LES case
 - 3. Setting up a wind farm configuration
- Two case studies
 - 1. SWIFT ABL test case
 - 2. ADM turbine model run

Example of using GUI to set up wind farm

Python/Jupyter notebook interface

Example of using the frontend via python interface


```
# Load the module
import amrwind_frontend as amrwind

# Start the amrwind_frontend app
tutorial1 = amrwind.MyApp.init_nogui()

# Set some parameters
tutorial1.setAMRWindInput('time_control',['const dt'])
tutorial1.setAMRWindInput('time.stop_time',100)
tutorial1.setAMRWindInput('time.fixed_dt', 0.1)
tutorial1.setAMRWindInput('incflo.physics', ['FreeStream', 'Actuator'])

# Do some other stuff here
...

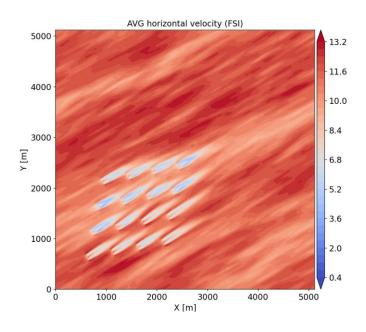
# Plot the figure
tutorial1.plotDomain(ax=ax)
```


Postprocessing engine

- Uniform, centralized way to postprocess
 AMR-Wind runs
- Acts on output sample planes
- All analyses use common YAML interface
- Run from command line or in Jupyter notebook

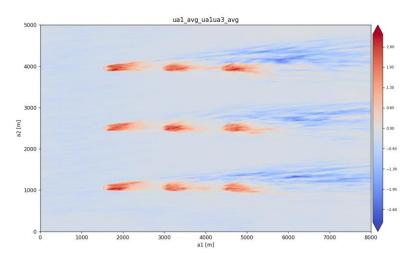
Available analyses

- Instantaneous plots + 2D movie creation
- Time averaging
- Reynolds stress averaging
- 2 point correlations
- Single point spectra in time
- Wake meandering statistics
- SPOD analysis
- OpenFAST postprocessing
- + more to come...

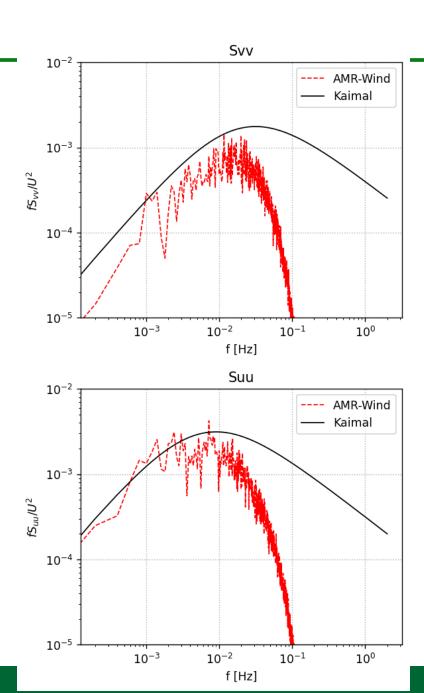

Example (Input)

```
task1:
  key1: value1
  key2: value2
  action1:
    param1: val1
  action2:
    param1: val1
task2:
  - name: postprocessing1
    key1: value1
    key2: value2
  - name: postprocessing2
    key1: valueA
    key2: valueB
```

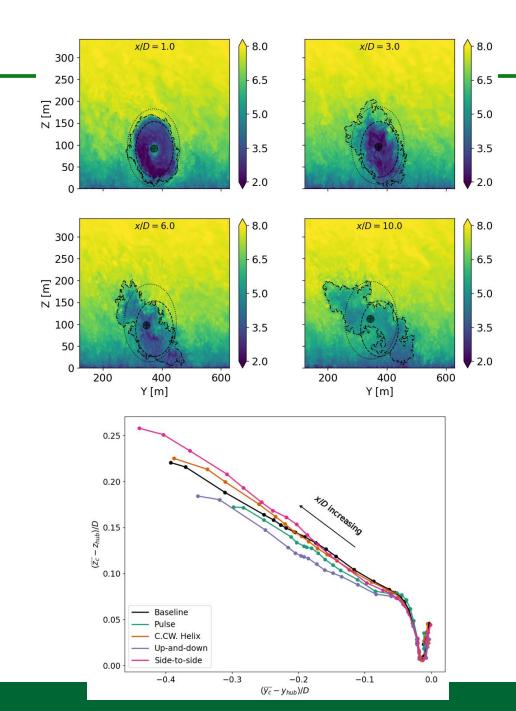
https://github.com/Exawind/amr-wind-frontend/tree/main/postproengine/doc

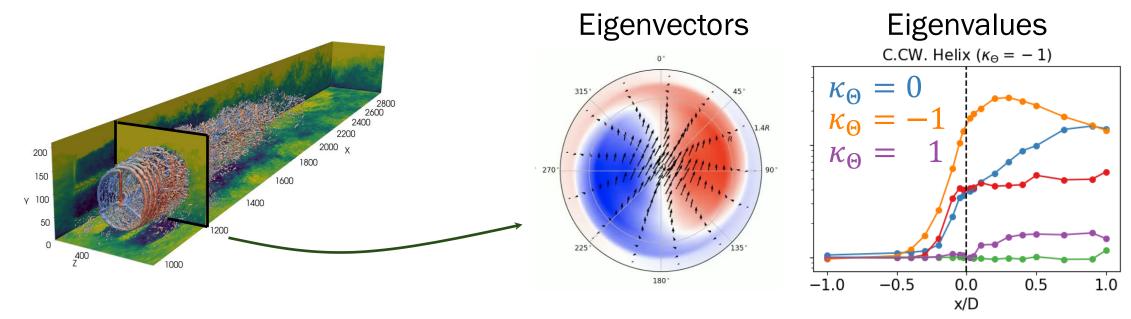

Contact: lcheung@sandia.gov, gyalla@sandia.gov

Example (time averaged planes)


Example (Flow-aligned reynolds stress & turbulent fluxes)

Example (spectra)

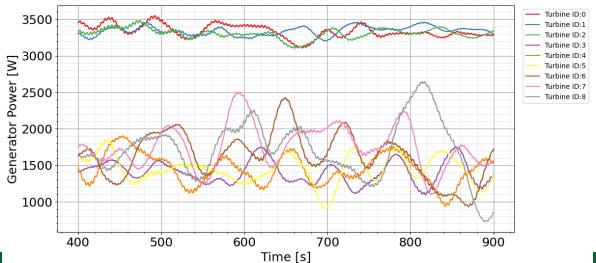

```
windspectra:
- name: spectra1
 ncfile: /lustre/orion/cfd162/scratch/lcheung/sampling_80000.nc
 group: p_bot
 pointlocationfunction: spectrapoints.getptlist
 csvfile: spectra1.csv
  kaimal:
    ustarsource: ablstatsfile
    ablstatsfile: /lustre/orion/cfd162/scratch/lcheung/abl_statistics80000.nc
    avgt: [20000, 25000]
    #ustar: 0.289809
    csvfile: kaimal1.csv
    z: 26.5
plotcsv:
 - name: plotSuu
   xlabel: 'f [Hz]'
   ylabel: '$f S_{uu}/U^2$'
    xscale: log
   yscale: log
   title: 'Suu'
   figsize: [5,4]
    legendopts: {'loc':'upper right'}
    postplotfunc: spectrapoints.formatplot
    csvfiles:
    - {'file':'spectra1.csv', 'xcol':'f', 'ycol':'Suu',
      'lineopts':{'color':'r', 'lw':1, 'linestyle':'--', 'label':'AMR-Wind'}}
    - {'file':'kaimal1.csv', 'xcol':'f', 'ycol':'Suu',
      'lineopts':{'color':'k', 'lw':1, 'linestyle':'-', 'label':'Kaimal'}}
```



Example (Wake Tracking & Meandering Statistics)

```
1 wake_meander:
   name: Wake YZ plane
   ncfile: ../PA_1p25_2/YZslice_05.00D_456.00s_1556.00s_AWCOFF.nc
 group: xslice
   method: ConstantArea
   yhub: 375.0
   zhub: 87.617700
   diam: 177.8
   savefile: wake_center_05.00D.csv
   output_dir: ./wake_meandering/
   plot:
     xlabel: 'Y [m]'
     vlabel: 'Z [m]'
     iter: 0
     savefile: wake_center_05.00D.png
   statistics:
     savefile: wake_stats_05.00D.csv
     mean: True
     std: True
     anisotropy: True
```

→ Integration with the SAMWICH package to compute wake boundary and center

$$\int_{\Omega} \mathbf{S}(\mathbf{x}, \mathbf{x}', f') \mathbf{W}(\mathbf{x}') \boldsymbol{\psi}(\mathbf{x}', f') \, \mathrm{d}\mathbf{x}' = \lambda(f') \boldsymbol{\psi}(\mathbf{x}, f').$$


Example (SPOD Analysis of Cross Flow Planes – Work in progress)

Example (OpenFAST postprocessing)

```
openfast:
 name:
 - T1_6D
 - ./T1_OpenFAST3p5_IEA15MW/IEA-15-240-RWT-Monopile/IEA-15-240-RWT-Monopile.out
 extension: .csv
 output_dir: ./OpenFAST/
 vars:
   Time
   - BldPitch1
   RotSpeed
   - RotThrust
   GenPwr
   RootMyb1
   - RootMxb1
   GenTq
   - RotTorq
   - AB1N038Alpha
   TwrBsFxt
   - TwrBsMxt
   YawBrMxp
   LSSTipMys
   LSSTipMzs
   individual_files: True
 operate:
    operations: ['mean','std','DEL']
    trange: [120,600]
    awc_period: False
    awc: baseline
    St: 0.3
    diam: 240
    U_st: 6.5
```

Generated Power by Turbine Pusle

• Questions, discussion