

WETO Software Stack User Workshops Technoeconomic Analysis and Cost Modeling June 12, 2024

Rafael Mudafort Pietro Bortolotti Garrett Barter Rob Hammond Sophie Bredenkamp Nick Riccobono Owen Roberts

Section	Duration	Time	Speaker
Intro	5′	0:00 - 0:05	Rafael Mudafort
WETO Stack Overview	10'	0:05 - 0:15	Rafael Mudafort
WETO Stack discussion	10'	0:15 - 0:25	You
LandBOSSE ORBIT CORAL WOMBAT WAVES NRWAL	30'	0:25 - 0:55	Rob Hammond Sophie Bredenkamp Nick Riccobono Owen Roberts
TEA / Cost Model Roadmap	5′	0:55 - 1:00	Rob Hammond
Polls / open-ended questions	2 - 5'	1:00	You
Community discussion	30' - 40'	1:05 - 1:40	You
Wrap up	5′	1:40 - end	Rafael Mudafort

Holistic Modeling Project

WETO Software Portfolio Coordination

US DOE & Lab-based Wind Research Projects

NREL's active WETO projects

Lawrence Berkeley

National Laboratory

ABORATORY

Holistic Modeling Project

Objective

Project Timeline

Overview

Grouped by what it does

https://nrel.github.io/WETOStack/portfolio_analysis/software_list.html

Systems Engineering

WindSE - RANS for systems engineering

Adapted from Big Adaptive Rotor (BAR) project

Technoeconomic Analysis / Cost Modeling

Workshop: June 12

Wind farm AEP estimate FLORIS

CapEx

OpEx

Operation & Maintenance **WOMBAT**

NRWAL: Offshore wind system cost and scaling model

Wind Asset Value Estimate **WAVES**

Wind Farm Controls and Analysis

Workshop: June 18

Hercules: Realtime highfidelity simulator for hybrid power plants with a specific focus on wind farm controls.

OpenFAST+

Workshop: June 20

High Fidelity Models

Workshop: TBD

- Regional scale weather
- Scales 10 km to 1000 km
- WRF numerics & models, built on AMReX
- GPU compatible
- Compressible

Microscale: AMR-Wind

- Atmospheric boundary layer
- Scales less than 10 km
- Large Eddy Simulation built on AMReX
- GPU compatible
- Structured grid with refinement zones
- Incompressible

Turbine scale: NALU-Wind

- Turbine, rotor, tower, nacelle
- Scales less than 1 km
- Unsteady Reynolds Averaged Navier Stokes
- GPU compatible
- Unstructured grid, geometry resolving
- Incompressible

Open Discussion

Raise your "hand" and we'll call your name to ask your question.

• Discussion topics

- Prospective / new users:
 - What is your experience in the learning or onboarding process?
- Experienced users:
 - What have been your primary pain points or bottlenecks?
 - What has or has not worked in integrating WETO software into your workflows?
 - How thoroughly do you feel you understand the capability of the tools available in the WETO Software Stack?
 - What has helped or hindered your open-source contribution to the WETO Software Stack?

TEA & Cost Models Overview

Rob Hammond

LandBOSSE

Owen Roberts

ORBIT

Nick Riccobono

ORBIT: Offshore Renewables Balance-of-system Installation Tool

A simulation model to evaluate the impact of technology and process innovations on BOS costs

Objective:

Provide a flexible, process-based simulation, incorporating novel technologies or installation methodologies.

<u>Approach:</u>

Benefits:

Compares strategies and design choices to evaluate most impactful cost reduction opportunities.

Publicly available: https://github.com/WISDEM/ORBIT

Model architecture

Examples

- ORBIT is written in Python 3.10
- Examples: https://github.com/WISDEM/ORBIT/tree/dev/examples

I Files	ORBIT / examples / Example - Parametric Manager.ipynb	
ני dev - + Q	🕘 nRiccobo Removed unused packages from Example - Parametric Manager 🗸 5c49b12 - 3 n	nonths ago
Q. Go to file t	Devident Code Diama Edd lines (Edd lack) - 19 1 VP	Bour C +
> 🖿 configs	Plane Cone Plane 204 (THE2 (204 (DC)) + 70.1 KB	Kaw Ly Zy
> 🖿 data		
🖺 1. Introduction.ipynb	ORBIT Example - ParametricManager	
🗋 2. Installation Modules.ipynb	ParametricManager provides a similar interface into ORBIT as ProjectManager but allows for some (or all) inputs to be parameterized.	
3. ProjectManager Introduction.ipynb	I his class is useful for quickly exploring how a module or project scales with certain inputs.	
🗋 4. Example Fixed Project.ipynb	In [12]: from ORBIT.phases.design import MonopileDesign	
5. Example Floating Project.ipynb	from ORBIT import ParametricManager	
Example - Cable Install Configurations.ipynb		
🗋 Example - Cash Flow.ipynb	Monopile Design Example	
🗋 Example - Custom Array Layout.ipynb	Perform a parametric sweep of site depth and mean wind speed to see the effects on monopile capex.	
Example - Dependent Phases.ipynb	Tn [13]:	
Example - Modifying Library Assets.ipynb	# For this example we will look at the MonopileDesign module. MonopileDesign.expected_config	
🗋 Example - Parametric Manager.ipynb	Out[13]: {'cite': {'denth': 'm' 'mean windsneed': 'm/s'}	
Example - Using HVDC or HVAC.ipynb	'plant': {'num_turbines': 'int'},	
supply_chain_dev.ipynb	'hub_height': 'm', 'rated windsned!: 'm/c'}	
> 🖿 library	'monopile_design': {'yiel_stress': 'Pa (optional)', 'load factor': 'float (optional)'.	

Example – Parametric Manager

Monopile CapEx:

Parameters: site depth, wind speed, soil coefficient

10 27	10 runs elapsed time: 0.02s 27 runs estimated time: 0.06s						
	site.depth	site.mean_windspeed	monopile_design.soil_coefficient	capex			
0	40	9	4000000	3.261239e+08			
1	60	9	4000000	4.041444e+08			
2	60	8	4000000	3.798072e+08			
3	20	8	4500000	2.371472e+08			
4	20	9	4500000	2.526935e+08			
5	60	8	500000	3.758376e+08			
6	40	10	500000	3.421996e+08			
7	40	8	500000	3.027043e+08			
8	40	8	4000000	3.062888e+08			
9	60	9	500000	3.998461e+08			

Example – Parametric Manager

Substation CapEx:

Parameters: Farm capacity, Transmission type

Example – Using HVDC or HVAC

Other Examples & Results

Impacts of turbine upsizing on balance of system cost Shields, et al, Applied Energy (2021)

Installation schedule concept plot

Example – Custom Array Layout

23

Cost of Energy 2022: Cost breakdown for fixed-bottom offshore wind projects. Source: Stehly, Beiter, and Duffy, 2022.

Reference

Technical Report:

Nunemaker, Jacob, Matthew Shields, Robert Hammond, and Patrick Duffy. 2020. "ORBIT: Offshore Renewables Balance-of-System and Installation Tool." NREL/TP-5000-77081, 1660132, MainId:26027. https://doi.org/10.2172/1660132.

Publicly Available:

https://github.com/WISDEM/ORBIT

Examples:

https://github.com/WISDEM/ORBIT/tree/dev/examples

Tutorials:

https://wisdem.github.io/ORBIT/source/tutorial/index.html

ORBIT Future Features

- Incorporate commodity prices (Steel, concrete, labor, etc.)
- Evaluate supply chain and logistical constraints
- Improve data visualization

CORAL

Sophie Bredenkamp

Concurrent ORBIT for shared Resource Analysis Library

CORAL Capabilities

User has control over:

- Feedering vs Shuttling installation method
 - Choose to enforce feedering for entire pipeline or for specific projects
- Regional Ports
 - Choose to assign port regions rather than assigning a specific port to each project
- US vs foreign vessels
 - Distinguish between US and foreign flagged vessels in the allocations
- Foundation type
 - Assign different foundation types to each project in the pipeline to influence installation methods

Demand versus supply in net vessel years for turbine installation, by installation year, excl. China Image from Spinergie NREL

28

Pipeline Results

Full Pipeline Gantt

Annual Port Throughput

Summary Statistics

Set up Example

Define filepaths for configuration files

Define vessel and port allocations for the start of the simulation

Define future resources

Run pipeline to update configs and manager to run the simulation

Create the DataFrame with all project installation periods

```
base = os.path.join(os.getcwd(), "analysis", "configs", "base.yaml")
base float = os.path.join(os.getcwd(), "analysis", "configs", "base float.yaml")
library = os.path.join(os.getcwd(), "analysis", "library")
base baseline = os.path.join(os.getcwd(), "analysis", "pipelines", "base baseline pipeline.csv")
allocations = {
    "wtiv": [('example heavy lift vessel', 2),('example wtiv', 2)],
    "feeder": ('example heavy feeder', 6),
    "port": [('new london', 1), ('new bedford', 1), ('sbmt', 1), ('njwp', 1), ],
    "ahts vessel": ('example ahts vessel', 2),
    "towing vessel": ('example towing vessel', 2),
wtiv dates = [dt.date(2025,1,1), dt.date(2030,1,1)]
pipeline = Pipeline(base baseline, base, base float, enforce feeders=True)
manager = GlobalManager(pipeline.configs, allocations, library path=library)
manager.add future resources('wtiv', 'example wtiv', wtiv dates)
manager.add future resources ('wtiv', 'example heavy lift vessel', wtiv dates)
manager.run()
df = pd.DataFrame(manager.logs).iloc[::-1]
```

Potential Future Work

- Build out US vs foreign flagged fleet flexibility
- Add tier 1 manufacturing tracking
 - Be able to set constraints on manufacturing throughput
 - Track tier 1 component demand throughout pipeline
- Prioritize usability and documentation/examples

WOMBAT

Rob Hammond

At a Glance

Thesis: How might maintenance strategies, technological innovations, and site conditions influence wind power plant operational expenditures (OpEx) and, ultimately, levelized cost of energy (LCOE)?

Under the hood:

- Low code interface powered by YAML configurations.
- Prescriptive modeling via discrete event simulation to run what-if scenarios for decision making.
- Modular and flexible code base to enable:
 - Land-based, distributed, and offshore wind with little change in inputs for users.
 - Arbitrarily simple or complex failure models to understand technology tradeoffs as needed.
- Documentation driven development to ensure all aspects of the code are documented for a user to follow along.

High-Level Software Architecture

High-Level Simulation Architecture

- Model evaluates O&M costs using discrete event simulation (series of events in sequential order where no changes occur between events):
 - Allows for detailed documentation of a system and its processes.
 - Allows for a prescriptive approach for exploring specific impacts compared to an optimization with a "best choice."

Configuring WOMBAT

Baseline Inputs

Subassemblies

- Failure rate(s)
- Maintenance tasks
- Equipment requirements
- Cost and time to complete repairs
- Power curve (IEC power curve)

Servicing Equipment

- Maintenance strategy and related definitions
- Port (if required)
- Capabilities
- Labor rates
- Equipment rates
- Operational limits

Miscellaneous

- Weather profile
 - Hourly wind speed and/or wave height
- Wind farm layout
- Site working hours
- Port distance

Repairs and Maintenance

- Primary definitions for cables, substations, and turbines
- Maintenance (scheduled)
 - Fixed frequency model (number of days) to align with regular servicing intervals
- Failures (unscheduled maintenance)
 - Weibull distribution (exponential if using 1 for the shape parameter)
 - Scale = 1 / (# Failures/system/year) = Mean Time Between Failures (MTBF, in years)
 - Random sampling for the next time a failure occurs
- Common parameterizations
 - Materials cost (whole cost or proportional to system CapEx)
 - Repair time
 - Service equipment requirement (maps to vessel/crane definitions)
 - CTV, DRN, RMT, SCN, LCN, CAB, DSV, TOW, AHV (more details on the next slide)
 - Operating reduction
 - Severity level (priority designation)

Servicing Equipment

- Strategy
 - Scheduled
 - Unscheduled: downtime
 - Unscheduled: requests
 - Unscheduled: tow (offshore only)
- Capabilities
- Working hours
- Mobilization
- Port distance
- Crew
- Weather constraints
 - Wind speed
 - Wave height
 - Speed (including during inclement weather)
 - Nonoperational periods
 - Slowdown periods

CTV: crew transfer vessel (onsite truck for land-based) DRN: drone RMT: remotely operated vessel/vehicle SCN: small crane (e.g., field support vessel) LCN: large crane (e.g., WTIV, jackup vessel) CAB: cable laying vessel (or similar for land-based) DSV: diving support vessel TOW: tugboat (requires a port) AHV: anchor handling vessel (can be based out of a port, or operate like other vessels)

Setting Up the COREWIND Example

✓	🕶 morro_bay_in_situ.yaml M 🗙	∞ hlv1.yaml ×
✓		
👌initpy	library > corewind > project > config > *** morro_bay_in_situ.yaml >	library > corewind > vessels > ML hiv1.yami > { } crew
🕶 corewind_array.yaml	1 name: COREWIND Morro Bay In Situ	Rob Hammond, 7 months ago 1 author (Rob Hammond)
🗯 corewind_export.yaml	2 weather: central_ca.csv	and the set of the set
∽ 📹 project	3 service_equipment:	2 equipment_rate: 290000
∽ 🚅 config	4 – ctv1.yaml	5 Capability: LCN
Ӛinitpy	5 – ctv2.yaml	5 strategy: requests
🗯 morro_bay_in_situ.yaml	6 – ctv3.yaml	6 strategy threshold: 1
morro_bay_tow_to_port.yaml	7 – ctv4.yaml	7 max windspeed transport: 10
✓	8 – ctv5.yaml	8 max_windspeed_craisport. 10
nit .pv	9 – ctv6.yaml	9 max_windspeed_repair. 10
morro bay 9D layout ttp.csv	10 - ctv7.yaml	10 max waveheight renair: 2
morro bay 9D layout csy	11 - cab.yaml	11 onsite: false
	12 - dsv.yaml	12 mobilization cost: 325000
# morro bay 9D layout svg	13 – ahv.yaml	13 mobilization days: 10
× = nort	14 - hlv1.yaml	14 workday start: 0
è init ny	15 layout: morro_bay 9D_layout.csv	15 workday end: 24
The morro hav part yaml	16 port distance: 60 # 20/100 for West of Barra Islan	16 charter days: 20
init ny	17 inflation rate: 0	17 crew transfer time: 0.25
😴INITpy	18 workday start: 6	18 n crews: 1
results	19 workday end: 22	19 crew:
	20 start year: 2002	20 day_rate: 219.18 # 80K/yr / 365 days
🥰initpy	21 end year: 2021	21 n_day_rate: 5 # Most tasks are 3 or 4,
<pre>we corewind_substation.yaml</pre>	22 project capacity: 1200	22 hourly_rate: 0
✓	23	23 n_hourly_rate: 0
🧔initpy	23	24
2020ATB_NREL_Reference_15MW_240.csv		
🚧 corewind_15MW_ttp.yaml		
🕶 corewind_15MW.yaml	COREWIND CONTIGURATION: <u>nttps://gitnub.com/WISDEM/WOMBAI</u>	/tree/main/library/corewind
> 🖆 vessels	COREWIND Example: <u>https://github.com/WISDEM/WOMBAT/blob</u>)/main/examples/NAWEA interactive walkthrough.ipynb
✓		
👶initpy		NREL

central_ca.csv

Setting Up the COREWIND Example

Preview 'central_ca.csv' ×

Datetime T	Windspeed T	Waveheight T
1/1/2002 0:00	1.78	2.86
1/1/2002 1:00	1.47	2.88
1/1/2002 2:00	1.05	2.88
1/1/2002 3:00	2.61	2.88
1/1/2002 4:00	5.14	2.88
1/1/2002 5:00	4.47	2.86
1/1/2002 6:00	1.74	2.84
1/1/2002 7:00	1.21	2.81
1/1/2002 8:00	2.43	2.77
1/1/2002 9:00	3.11	2.73
1/1/2002 10:00	1.13	2.69
1/1/2002 11:00	2.2	2.64

brary	$>$ corewind $>$ turbines $> \infty$ corewind_15MW.yaml $>$ { } electron
	capacity_kw: 15000
	capex_kw: 1300
	power_curve:
	file: 2020ATB_NREL_Reference_15MW_240.csv
	bin_width: 0.5
	electrical_system:
	name: electrical_system
	maintenance:
	- description: n/a
10	time: 0
11	materials: 0
12	service_equipment: CTV
13	frequency: 0
14	failures:
15	1:
	scale: 1.859
17	shape: 1
18	time: 14
19	materials: 1000
20	service_equipment: CTV
21	operation_reduction: 0.0
22	level: 1
23	description: power converter minor repair
24	<pre># n_technicians: 2</pre>

library	<pre>> corewind > cables > *** corewind_array.yaml > { } f</pre>
	name: array cable
	maintenance:
	description: n/a
	time: 0
	materials: 0
	service_equipment: CTV
	frequency: 0
	failures:
	4:
11	scale: 40
12	shape: 1
13	time: 240
14	materials: 30000
15	operation_reduction: 0
	service_equipment: [CAB]
17	replacement: false
	level: 4
19	description: array cable major repair
	# n_technicians: 10
21	6:
22	scale: 62.5
23	shape: 1
	time: 360
25	materials: 220000
	operation_reduction: 0
27	service_equipment: [CAB]
	replacement: true
29	level: 6
	description: array cable replacement
31	<pre># n_technicians: 10</pre>

COREWIND Configuration: https://github.com/WISDEM/WOMBAT/tree/main/library/corewind

COREWIND Example: https://github.com/WISDEM/WOMBAT/blob/main/examples/NAWEA interactive walkthrough.ipynb

Setting Up the COREWIND Example

	WTG_0009 <u>WTG_0008 WTG_0007 WTG_0006 WTG_0008 WTG_0004 WTG_0008 WTG_0008 WTG_0008 WTG_0008 WTG_0008 WTG_0008</u>
	WTG_0109 . WTG 0108 . WTG 0107 . WTG 0106 . WTG 0109 . WTG 0104 . WTG 0103 . WTG 0103 . WTG 0101 . WTG 0100
e	WTG_0200 , WTG 0200 , WTG 0202 , WTG 0201 , WTG 0200 ,
rt.yam rt.yam y.yaml	WTG_0300 + WTG 0308 + WTG 0300 + WTG 0306 + WTG 0305 + WTG 0304 + WTG 0303 + WTG 0302 + WTG 0301 + WTG 0300
yaml yaml	WTG_0400 . WTG 0408 . WTG 0407 . WTG 0406 . WTG 0405 . WTG 0404 . WTG 0403 . WTG 0402 . WTG 0401 . WTG 0400
	WTG_0500 + WTG 0500 + WTG 0500 + WTG 0500 + WTG 0503 + WTG 0504 + WTG 0503 + WTG 0502 + WTG 0502 + WTG 0500 + WTG 0500
	WTG_0609 <u>, WTG 0608 , WTG 0607 , WTG 0606 , WTG 0605 , WTG 0604 , WTG 0603 , WTG 0607 , WTG 0607 , WTG 0600 , WTG 0000 , WTG 0600 ,</u>
	WTG 0709 <u>WTG 0708 WTG 0707</u> WTG 0700 WTG 0705 WTG 0704 WTG 0703 WTG 0703 WTG 0702 WTG 0704 WTG 0700

d	substation_id	name	type	longitude	latitude	string	order	subassembly	upstream_cable
SS1	SS2	SS1	substation	-121.6445116	35.40616396	9	0	corewind_substation.yaml	corewind_export.yan
SS2	SS2	SS2	substation	-121.6458132	35.32827984	9	1	corewind_substation.yaml	corewind_export.yan
VTG_0000	SS1	WTG_0000	turbine	-121.6678132	35.4356351	0	0	corewind_15MW.yaml	corewind_array.yam
VTG_0001	SS1	WTG_0001	turbine	-121.6916045	35.43589529	0	1	corewind_15MW.yaml	corewind_array.yam
VTG_0002	SS1	WTG_0002	turbine	-121.7153961	35.43615079	0	2	corewind_15MW.yaml	corewind_array.yam
VTG_0003	SS1	WTG_0003	turbine	-121.739188	35.43640161	0	3	corewind_15MW.yaml	corewind_array.yam

COREWIND Configuration: <u>https://github.com/WISDEM/WOMBAT/tree/main/library/corewind</u> COREWIND Example: <u>https://github.com/WISDEM/WOMBAT/blob/main/examples/NAWEA_interactive_walkthrough.ipynb</u>

Results and Workflows

Running a Simulation

Configuring is 90% of the work!

```
[1]: from wombat import Simulation
sim = Simulation(
    library_path="../library/corewind/",
    config="morro_bay_in_situ.yaml",
)
sim.run()
print("Done!")
Done!
```

The next set of examples comes from a more in-depth explanation on understanding simulation results and comparing results between scenarios:

<u>https://github.com/WISDEM/WOMBAT/blob/main/examples/NAWEA_interactive_w</u> <u>alkthrough.ipynb</u>

Inspecting Results

Inspecting Results

opex_br	<pre>eakdown = pd.concat(</pre>	Þ	\uparrow	\downarrow	÷	Ŧ	Î
	<pre>sim_in_situ.metrics.equipment_costs("project"),</pre>						
	<pre>sim_in_situ.metrics.labor_costs("project"), sim_in_situ.metrics.project_fixed_costs("project", sim_in_situ.metrics.project_fore("project")</pre>	"lo	w"),				
1	Sim_in_situ.metrics.port_rees("project"),						
1,	-1						
ax1	5=1						
opex_br	eakdown.index = ["In Situ"]						
opex_br	eakdown.loc["Tow-to-Port"] = pd.concat(
[
	<pre>sim_ttp.metrics.equipment_costs("project"),</pre>						
	<pre>sim_ttp.metrics.labor_costs("project"),</pre>						
	<pre>sim_ttp.metrics.project_fixed_costs("project", "low</pre>	""),					
	<pre>sim_ttp.metrics.port_fees("project"),</pre>						
1,							
axi	s=1						
).value	s [0]						
opex br	eakdown.style.format("{:2f}")						

equipment_cost total_labor_cost operations In Situ 2,274,924,948.23 48,935,360.44 0.00 -to-Port 1,027,098,070.73 72,228,657.83 0.00 48	
In Situ 2,274,924,948.23 48,935,360.44 0.00	n Rate: {scheduled:. 2 %}") n Rate: {unscheduled:. 2 %}")
-to-Port 1,027,098,070.73 72,228,657.83 0.00 48	

overace rubic compterior rucer porizio		
	process_times = sim_ttp.metrics.process_times()	Î
Tow-to-Port		
Scheduled Task Completion Rate: 71.72%	# Normalize the times for hours per failure, to understand the average waiting and repair time	
Unscheduled Task Completion Rate: 76.93%	<pre>time_columns = ["time_to_completion", "process_time", "downtime", "time_to_start"]</pre>	
Overall Task Completion Rate: 75.01%	process_times.loc[:, time_columns] = process_times[time_columns].values / process_times.N.values.reshape(-1,	1)

scheduled = sim_in_situ.metrics.task_completion_rate(which="scheduled", frequency="project").values[0][0] unscheduled = sim_in_situ.metrics.task_completion_rate(which="unscheduled", frequency="project").values[0][0] combined = sim_in_situ.metrics.task_completion_rate(which="both", frequency="project").values[0][0]

scheduled = sim_ttp.metrics.task_completion_rate(which="scheduled", frequency="project").values[0][0] unscheduled = sim_ttp.metrics.task_completion_rate(which="unscheduled", frequency="project").values[0][0] combined = sim_ttp.metrics.task_completion_rate(which="both", frequency="project").values[0][0]

print("In Situ")

print("Tow-to-Port")

print(f"

print()

print(f" Scheduled Task Completion Rate: {scheduled:.2%}") print(f"Unscheduled Task Completion Rate: {unscheduled:.2%}")

Overall Task Completion Rate: {combined:.2%}")

Sort and make it look nice process_times.sort_values("time_to_completion", ascending=False).style.format("{:,.0f}")

	time_to_completion	process_time	downtime	time_to_start	N
category					
yaw system major replacement	20,250	110	110	9,882	2
minor ballast pump repair	16,370	23	81	13,933	30
direct drive generator major repair	15,323	49	709	12,760	151
direct drive generator major replacement	14,774	190	202	11,442	35
annual turbine inspection	12,666	34	148	10,243	4,765
main shaft major repair	12,637	33	1,770	11,289	59
main shaft replacement	12,269	132	273	11,039	25
direct drive generator minor repair	11,877	23	55	9,591	2,732
yaw system major repair	10,833	40	43	10,793	12

Comparing Many Scenarios

Offshore Windfarm Availability

* Pfaffel, S., S. Faulstich, and K. Rohrig. "Performance and Reliability of Wind Turbines: A Review." Energies, 10(11), 2017.

Relationships Between Cost & Availability

Future of WOMBAT

What's on the horizon for WOMBAT over the next few years?

Potential Future Work

Model Development

- Model tow-to-port simulations at a higher resolution
- Support Operation Vessels (SOV)
- Date-based maintenance
- Single file/dictionary configuration like ORBIT and FLORIS
- Multicrew handoff
- Other ideas? Add them to the Issues board:

https://github.com/WISDEM/WOM BAT/issues

Validation and Review

- Create a land-based example
- Develop a baseline land-based, fixed offshore, and floating offshore wind data set for easier modeling
- Publish the results of a model comparison exercise

Rob Hammond

At a Glance

Thesis: How might maintenance strategies, technological innovations, and site conditions influence wind power plant operational expenditures (OpEx) and, ultimately, levelized cost of energy (LCOE)?

Under the hood:

- Thin wrapper for the offshore wind modeling libraries to get a holistic look at LCOE
- Provides the key missing connections between ORBIT, WOMBAT, and FLORIS inputs and outputs that would pose a significant burden to analysts

https://github.com/NREL/WAVES https://nrel.github.io/WAVES/

Input Model

Setting Up a Scenario

- library > base_2022 > project > config > >> base_fixed_bottom_2022.yaml > ... Rob Hammond, 6 months ago | 1 author (Rob Hammond)
 - 1 # Primary model configurations
 - 2 orbit_config: base_fixed_bottom_2022_install.yaml
 - 3 wombat_config: base_fixed_bottom_2022_operations.yaml
 - 4 floris_config: base_fixed_bottom_2022_floris_jensen.yaml
 - 5 weather_profile: era5_40.0N_72.5W_1990_2020.csv
 - 6
 - 7 # Shared input connections
 - 8 orbit_start_date: 1/1/1998
 - 9 orbit_weather_cols:
 - .0 windspeed_100m
 - 1 windspeed_10m
 - 2 waveheight
 - 13 floris_wind_direction: wind_direction_100m
 - 14 floris_windspeed: windspeed_100m
 - 15 floris_x_col: floris_x
 - 16 floris_y_col: floris_y
 - 17
 - 18 # Create the necessary connections
 - 19 # NOTE: these are default values, but worth highlighting for an example
 - 20 connect_floris_to_layout: true
 - 21 conenct_orbit_array_design: true

∞ base_fixed_bottom_2022.yaml 9+ ×

library > base_2022 > project > config > 🚧 base_fixed_bottom_2022.yaml > ...

- 23 # High-level project financials
- 24 discount_rate: 0.025
- 25 fixed_charge_rate: 0.0648 # real FCR from national LCOE study, 25
- 26 loss_ratio: 0.1
- offtake_price: 83.30

28

- 9 # Cash flow settings
- 0 project_capex_date:
- 1 !!python/tuple
- 2 1996
- 3 1
- _!!python/tuple
- 35 1996
- 36 7
- 7 !!python/tuple
- 1997
- 9 1
- 0 !!python/tuple
- 41 1997
- 2 7
- 43 > soft_capex_date: !!python/tuple...
- 46 > system_capex_date: --
- 95 > turbine_capex_date: --

Running WAVES

> waves library/base_2022 base_fixed_bottom_2022.yaml

[1]: from pathlib import Path from waves import Project
from waves.utilities import load_yaml
[2]: # Handle lingering path issues for FLORIS turbine library
<pre>config = load_yaml(library_path / "project/config", "base_floating_2022.yaml")</pre>
<pre>config.update({"library path": library path.})</pre>
<pre>config["floris_config"] = load_yaml(library_path / "project/config", config["floris_config"]) config["floris_config"] ////////////////////////////////////</pre>
<pre>config("floris_config")["farm"]["turbine_library_path"] = library_path / "turbines"</pre>
<pre>[3]: project = Project.from_dict(config)</pre>
<pre>FutureWarning: /Users/rhammond/GitHub_Public/WAVES/waves/project.py:114 •••</pre>
[4]: project.run(
<pre>which_floris="wind_rose", # month-based wind rose wake analysis full wind rose=False _ # use the WOMBAT date range</pre>
<pre>floris_reinitialize_kwargs={"cut_in_wind_speed": 3.0, "cut_out_wind_speed": 25.0} # standard ws range</pre>
UserWarning: /Users/rhammond/GitHub_Public/ORBIT/ORBIT/phases/design/array_system_design.py:906 •••
259
•p

Inspecting Results

<pre>project_fixed.cash_flow("annual", breakdown=True).T</pre>							
year	1995	1996	1997	1998	1999	2000	
CapEx_Soft	-325,896,000.00	0.00	0.00	0.00	0.00	0.00	
CapEx_Project	0.00	-75,625,000.00	-75,625,000.00	0.00	0.00	0.00	
CapEx_Turbine	0.00	-255,000,000.00	-255,000,000.00	-255,000,000.00	-255,000,000.00	0.00	
CapEx_ArrayCableSystem	0.00	-27,798,308.93	-27,798,308.93	-27,798,308.93	-27,798,308.93	0.00	
CapEx_ExportCableSystem	0.00	-41,914,140.00	-41,914,140.00	-41,914,140.00	-41,914,140.00	0.00	
CapEx_OffshoreSubstationSystem	0.00	-22,909,293.75	-22,909,293.75	-22,909,293.75	-22,909,293.75	0.00	
CapEx_ScourProtectionSystem	0.00	-2,560,500.00	-2,560,500.00	-2,560,500.00	-2,560,500.00	0.00	
CapEx_MonopileSystem	0.00	-123,603,041.22	-123,603,041.22	-123,603,041.22	-123,603,041.22	0.00	
CapEx_ArrayCableInstallation	0.00	0.00	0.00	-129,854,883.03	0.00	0.00	
CapEx_ExportCableInstallation	0.00	0.00	0.00	-31,809,412.69	0.00	0.00	
CapEx_MonopileInstallation	0.00	0.00	0.00	-44,655,354.55	0.00	0.00	
CapEx_OffshoreSubstationInstallation	0.00	0.00	0.00	-5,540,460.12	0.00	0.00	
CapEx_ScourProtectionInstallation	0.00	0.00	0.00	-44,131,310.50	0.00	0.00	
CapEx_TurbineInstallation	0.00	0.00	0.00	-58,007,701.61	0.00	0.00	
OpEx	0.00	0.00	0.00	0.00	0.00	-37,767,273.29	
Revenue	0.00	0.00	0.00	0.00	0.00	209,106,520.29	
cash_flow	-325,896,000.00	-549,410,283.90	-549,410,283.90	-787,784,406.41	-473,785,283.90	171,339,247.00	

Inspecting Results

: # Capture the CapEx breakdow df capex fixed = pd.DataFram	vn from each scena	rio		⊡ ↑ ↓ ≛ 두 🕯	<pre>report_df_fixed = project_fixed.gene</pre>	<pre>rate_report(metr</pre>	ics_configuration,	project_name_fixed).1
project_fixed.orbit.cape columns=["Component", "Component", "Component, "Component", "Component, "Com	ex_breakdown.items	(),			report df			
<pre>df_capex_floating = pd.Dataf project_floating.orbit.c columns=["Component", ""</pre>	Frame(capex_breakdown.it(capex_(\$) - Floati	ems(),			:	COE 2022 - Fixed	COE 2022 - Floating	
)					Metrics			
# Compute the normalized Cap	DEx for each scena	rio	(*) 51		# Turbines	50.00	50.00	
<pre>df_capex_tixed["CapEx (\$/kW) - Fixed"] = df_capex_fixed["CapEx (\$) - Fixed"] / project_fixed.capacity("kw") df_capex_floating["CapEx (\$/kW) - Floating"] = df_capex_floating["CapEx (\$) - Floating"] / project_floating.capacity("kw")</pre>			Turbine Rating (MW)	12.00	12.00			
# Combine the results into a	one, easy to view o	dataframe			Project Capacity (MW)	600.00	600.00	
<pre>df_capex = df_capex_fixed.me df_capex_floating,</pre>	erge(* copert outputting (mill)	4.00	4.00	
<pre>on="Component", how="outer",</pre>					# 055	1.00	1.00	
).fillna(0.0).set_index("Com df capex = df capex.iloc[pd.	<pre>nponent") .Categorical(df car</pre>	pex.index. capex o	rder).argsort()]		Total Export Cable Length (km)	118.07	89.17	
df_capex		,			Total Array Cable Length (km)	277.98	333.09	
:	CapEx (\$) - Fixed Ca	apEx (\$/kW) - Fixed	CapEx (\$) - Floating	CapEx (\$/kW) - Floating	FCR (%)	6.48	6.48	
Component					Offtake Price (\$/MWb)	83 30	83 30	
Array System	111,193,235.71	185.32	133,234,144.17	222.06	ontake Phoe (of Minh)	00.00	00.00	
Export System	100,357,800.00	167.26	75,794,538.61	126.32	CapEx (\$)	2,524,329,479.24	3,196,659,962.31	
Substructure	307 153 308 59	511.92	630,709,636,60	105118	CapEx per kW (\$/kW)	4,207.22	5,327.77	
Scour Protection	10.242.000.00	17.07	0.00	0.00	OpEx (\$)	1.060.154.836.28	972,561,379.04	
Mooring System	0.00	0.00	275,612,740.33	459.35		1766.00	1 620 04	
Turbine	1,020,000,000.00	1,700.00	1,020,000,000.00	1,700.00	Opex per kw (\$/kw)	1,766.92	1,620.94	
Array System Installation	108,761,352.72	181.27	167,028,845.71	278.38	Annual OpEx per kW (\$/kW)	84.14	77.19	
Export System Installation	135,777,423.05	226.30	144,141,926.89	240.24	Energy Availability (%)	94.58	90.34	
Offshore Substation Installation	7,424,892.50	12.37	15,152,770.85	25.25	Gross Capacity Eactor (%)	52.91	59.35	
Substructure Installation	44,655,354.55	74.43	88,975,886.55	148.29		02.01	00.00	
Scour Protection Installation	44,131,310.50	73.55	0.00	0.00	Net Capacity Factor With Wake Losses (%)	46.75	51.04	
Mooring System Installation	0.00	0.00	69,384,372.60	115.64	Net Capacity Factor With All Losses (%)	41.46	45.11	
Turbine Installation	58,007,701.61	96.68	0.00	0.00		2 181 019 94	2 372 504 25	
Soft	325,896,000.00	543.16	325,896,000.00	543.16	AEP (MWII)	2,101,019.94	2,072,004.20	
Project	151,250,000.00	252.08	151,250,000.00	252.08	AEP per kW (MWh/kW)	3.64	3.95	
					LCOE (\$/MWh)	98.15	106.83	

https://github.com/NREL/WAVES/blob/main/examples/waves_example.ipynb

Future Work

- Adopt FLORIS v4.0
- Incorporate LandBOSSE for land-based CapEx
- Parameter sweeps to better inform decision making
- Other ideas? Add them to the Issues board: <u>https://github.com/NREL/WAVES/issues</u>

NRWAL

Owen Roberts

Roadmap

Rob Hammond

TEA Software Roadmap

Short Term

- Repository cleanup
- Documentation improvements (README and docs sites)
- Ensure examples are informative and useful
- PyPI listings for easy "pip install xx"

Long Term

- Link up adjacent models that work well together (like WAVES did)
- Inflate costs and document sources adequately
- Host more workshops or user meetings (if helpful)
- Identify new and relevant pathways (hybrid plants, hydrogen, new fixed/floating/vessel technologies)

Technoeconomic Analysis and Cost Models

Polls Open Discussion

TEA & Cost Models

Raise your hand and we'll call your name to ask a question.

• Discussion topics

- Prospective / new users:
 - What are your thoughts on the learning or onboarding process?
- Experienced users:
 - What have been your primary pain points or bottlenecks?
 - What has worked or not worked in helping to integrate these software into your workflows?
 - How thoroughly do you understand the capability of these tools?
 - What has helped or hindered your open-source contribution to these software?

Thank you for your time today!

- Need help with a particular problem?
 - GitHub Issues or Discussions pages for any of the models
 - NREL User Forum (for NREL models): <u>forums.nrel.gov</u>
- Have further thoughts that you want to share? Send feedback to <u>Rafael.Mudafort@nrel.gov</u>
- How could we have done better? Send feedback to <u>Rafael.Mudafort@nrel.gov</u>
- Software repositories:
 - LandBOSSE: <u>https://github.com/WISDEM/LandBosse</u>
 - ORBIT: <u>https://github.com/WISDEM/ORBIT</u>
 - CORAL: https://github.com/NREL/CORAL
 - WOMBAT: <u>https://github.com/WISDEM/WOMBAT</u>
 - WAVES: <u>https://github.com/NREL/WAVES</u>
 - NRWAL: <u>https://github.com/NREL/NRWAL</u>