Skip to content

TCO Calculations module

t3co.tco.tcocalc

calculate_dollar_cost(veh: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario) -> dict

This helper method calculates the MSRP breakdown dictionary from - Glider - Fuel converter - Fuel Storage - Motor & power electronics - Plug - Battery - Battery replacement - Purchase tax

Parameters:

Name Type Description Default
veh fastsim.vehicle.Vehicle

FASTSim vehicle object of analysis vehicle

required
scenario run_scenario.Scenario

Scenario object of current selection

required

Returns:

Name Type Description
cost_set dict

Dictionary containing MSRP breakdown

Source code in t3co/tco/tcocalc.py
Python
def calculate_dollar_cost(
    veh: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario
) -> dict:
    """
    This helper method calculates the MSRP breakdown dictionary from
    -   Glider
    -   Fuel converter
    -   Fuel Storage
    -   Motor & power electronics
    -   Plug
    -   Battery
    -   Battery replacement
    -   Purchase tax

    Args:
        veh (fastsim.vehicle.Vehicle): FASTSim vehicle object of analysis vehicle
        scenario (run_scenario.Scenario): Scenario object of current selection

    Returns:
        cost_set (dict): Dictionary containing MSRP breakdown
    """
    chargingOn = False

    fc_ice_base_cost_dol = scenario.fc_ice_base_cost_dol
    markup_pct = scenario.markup_pct
    fc_ice_cost_dol_per_kw = scenario.fc_ice_cost_dol_per_kw
    pe_mc_base_cost_dol = scenario.pe_mc_base_cost_dol
    pe_mc_cost_dol_per_kw = scenario.pe_mc_cost_dol_per_kw
    ess_base_cost_dol = scenario.ess_base_cost_dol
    ess_cost_dol_per_kwh = scenario.ess_cost_dol_per_kwh
    plugPrice = scenario.plug_base_cost_dol
    tax_rate_pct = scenario.tax_rate_pct
    # TODO add fc_fuelcell_cost_dol_per_kw in this list?

    # vehicle glider price does not have markup_pct applied to it
    # on 11/23/2021 it was discussed but we decided it's fine to keep it this way. Glider price is an input that could
    # already have this factored in, especially for TDA, the current main user of T3CO
    vehicle_glider_cost_dol = scenario.vehicle_glider_cost_dol

    veh_pt_type = veh.veh_pt_type

    fc_max_kw = veh.fc_max_kw

    # old python fcEffType maps
    # if self.fcEffType == 1:    # SI:         SI engine
    # elif self.fcEffType == 2:  # Atkinson:   Atkinson cycle SI engine -- greater expansion
    # elif self.fcEffType == 3:  # Diesel:     Diesel (compression ignition) engine
    # elif self.fcEffType == 4:  # H2FC:       H2 fuel cell
    # elif self.fcEffType == 5:  # HD_Diesel:  heavy duty Diesel engine
    # new enumeration for types
    # FC_EFF_TYPES = ("SI", "Atkinson", "Diesel", "H2FC", "HD_Diesel")

    # #  TODO, need an assert for veh.fcEffType in vehicle.effTypes []
    # fcPrice
    if veh.veh_pt_type == gl.BEV or veh.fc_max_kw == 0:
        fcPrice = 0

    elif veh.fc_eff_type == "H2FC":
        fcPrice = scenario.fc_fuelcell_cost_dol_per_kw * fc_max_kw
    # TODO, what should 9 map too??
    elif veh.fc_eff_type == 9:
        fcPrice = (
            scenario.fc_cng_ice_cost_dol_per_kw * fc_max_kw
        ) + fc_ice_base_cost_dol

    else:
        fcPrice = (fc_ice_cost_dol_per_kw * fc_max_kw) + fc_ice_base_cost_dol
    fcPrice *= markup_pct

    # TODO,this should get handled in fastsim.vehicle on INPUT VALIDATION
    # that code has a bug and some logic errors, needs fixing
    # if fcPrice != 0:
    #     eff_type_err_msg = f"ERROR: veh.fc_eff_type {veh.fc_eff_type} must be part of vehicle.FC_EFF_TYPES {vehicle.FC_EFF_TYPES}"
    #     eff_type_err_msg += """\n\toverwrite 1 with 'SI'\n\toverwrite 2 with 'Atkinson'"""
    #     eff_type_err_msg += """\n\toverwrite 3 with 'Diesel'\n\toverwrite 4 with 'H2FC'"""
    #     eff_type_err_msg += """\n\toverwrite 5 with 'HD_Diesel'"""
    #     assert veh.fc_eff_type in vehicle.FC_EFF_TYPES, eff_type_err_msg

    # fuelStorPrice
    if veh.veh_pt_type == gl.BEV:
        fuelStorPrice = 0
    elif veh.veh_pt_type == gl.HEV and scenario.fuel_type[0] == "hydrogen":
        fuelStorPrice = scenario.fs_h2_cost_dol_per_kwh * veh.fs_kwh
    elif (
        veh.veh_pt_type in [gl.CONV, gl.HEV, gl.PHEV] and scenario.fuel_type[0] == "cng"
    ):
        fuelStorPrice = scenario.fs_cng_cost_dol_per_kwh * veh.fs_kwh
    elif veh.veh_pt_type in [gl.CONV, gl.HEV, gl.PHEV]:
        fuelStorPrice = scenario.fs_cost_dol_per_kwh * veh.fs_kwh
    fuelStorPrice *= markup_pct

    # calculate mcPrice
    mc_max_kw = veh.mc_max_kw
    if mc_max_kw == 0:
        mcPrice = 0
    else:
        mcPrice = pe_mc_base_cost_dol + (pe_mc_cost_dol_per_kw * mc_max_kw)
    mc_max_kw *= markup_pct

    # calc ESS price
    if veh.ess_max_kwh == 0:
        essPrice = 0
    else:
        essPrice = ess_base_cost_dol + (ess_cost_dol_per_kwh * veh.ess_max_kwh)
    essPrice *= markup_pct

    # calc plugPrice
    if (
        veh_pt_type == gl.PHEV
        or veh_pt_type == gl.BEV
        or (veh_pt_type == gl.HEV and chargingOn)
    ):
        plugPrice = plugPrice
    else:
        plugPrice = 0
    plugPrice *= markup_pct

    if veh_pt_type == gl.CONV:
        msrp = vehicle_glider_cost_dol + fuelStorPrice + fcPrice
    # could be HEV or FCEV
    elif veh_pt_type == gl.HEV:
        msrp = vehicle_glider_cost_dol + fuelStorPrice + fcPrice + mcPrice + essPrice
    elif veh_pt_type == gl.PHEV:
        msrp = (
            vehicle_glider_cost_dol
            + fuelStorPrice
            + fcPrice
            + mcPrice
            + essPrice
            + plugPrice
        )
    elif veh_pt_type == gl.BEV:
        msrp = vehicle_glider_cost_dol + mcPrice + essPrice + plugPrice

    pTaxCost = tax_rate_pct * msrp


    cost_set = {
        "Glider": vehicle_glider_cost_dol,
        "Fuel converter": fcPrice,
        "Fuel Storage": fuelStorPrice,
        "Motor & power electronics": mcPrice,
        "Plug": plugPrice,
        "Battery": essPrice,
        "Battery replacement": 0,
        "Purchase tax": pTaxCost,
        "msrp": msrp,
        # "Insurance": insurance_cost,
        # "Residual Cost": residual_cost
    }
    return cost_set

calculate_opp_costs(vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario, range_dict: dict) -> dict

This helper method calculates opportunity costs and generates veh_opp_cost_set from - Payload Lost Capacity Cost/Multiplier - Fueling Downtime - Maintenance and Repair Downtime

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object of analysis vehicle

required
scenario run_scenario.Scenario

Scenario object of current selection

required
range_dict dict

Dictionary containing range values from fueleconomy.get_range_mi()

required

Returns:

Name Type Description
veh_opp_cost_set dict

Dictionary containing opportunity cost results

Source code in t3co/tco/tcocalc.py
Python
def calculate_opp_costs(
    vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario, range_dict: dict
) -> dict:
    """
    This helper method calculates opportunity costs and generates veh_opp_cost_set from
    -   Payload Lost Capacity Cost/Multiplier
    -   Fueling Downtime
    -   Maintenance and Repair Downtime

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object of analysis vehicle
        scenario (run_scenario.Scenario): Scenario object of current selection
        range_dict (dict): Dictionary containing range values from fueleconomy.get_range_mi()

    Returns:
        veh_opp_cost_set (dict): Dictionary containing opportunity cost results
    """
    oppcostobj = opportunity_cost.OpportunityCost(scenario, range_dict)
    if scenario.activate_tco_payload_cap_cost_multiplier:
        assert gl.not_falsy(scenario.plf_ref_veh_empty_mass_kg)
        assert np.isnan(scenario.plf_ref_veh_empty_mass_kg) == False
        oppcostobj.set_payload_loss_factor(vehicle, scenario)

    if scenario.activate_tco_fueling_dwell_time_cost:
        assert gl.not_falsy(scenario.downtime_oppy_cost_dol_per_hr)
        assert not np.isnan(scenario.fdt_num_free_dwell_trips)
        assert not np.isnan(scenario.fdt_dwpt_fraction_power_pct)
        assert not np.isnan(scenario.fdt_available_freetime_hr)
        assert not np.isnan(scenario.fdt_avg_overhead_hr_per_dwell_hr)
        assert (
            gl.not_falsy(scenario.shifts_per_year)
            and len(oppcostobj.shifts_per_year) >= scenario.vehicle_life_yr
        ), f"Provide scenario.shifts_per_year as a vector of length > scenario.vehicle_life_yr. Currently {len(oppcostobj.shifts_per_year)}"
        assert gl.not_falsy(scenario.fdt_frac_full_charge_bounds)
        oppcostobj.set_fueling_dwell_time_cost(vehicle, scenario)

    if scenario.activate_mr_downtime_cost:
        assert gl.not_falsy(scenario.mr_planned_downtime_hr_per_yr)
        assert any(np.isnan(scenario.mr_unplanned_downtime_hr_per_mi)) == False
        assert np.isnan(scenario.mr_tire_replace_downtime_hr_per_event) == False
        assert gl.not_falsy(scenario.mr_avg_tire_life_mi)
        oppcostobj.set_M_R_downtime_cost(vehicle, scenario)

    veh_opp_cost_set = {
        "payload_cap_cost_multiplier": oppcostobj.payload_cap_cost_multiplier,
        "daily_trip_distance_mi": oppcostobj.d_trip_mi,
        "net_fueling_dwell_time_hr_per_yr": oppcostobj.net_fueling_dwell_time_hr_per_yr,
        "fueling_dwell_labor_cost_dol_per_yr": oppcostobj.fueling_dwell_labor_cost_dol_per_yr,
        "fueling_downtime_oppy_cost_dol_per_yr": oppcostobj.fueling_downtime_oppy_cost_dol_per_yr,
        "net_mr_downtime_hr_per_yr": oppcostobj.net_net_mr_downtime_hr_per_yr_per_yr,
        "mr_downtime_oppy_cost_dol_per_yr": oppcostobj.mr_downtime_oppy_cost_dol_per_yr,
        "total_downtime_hr_per_yr": np.array(
            oppcostobj.net_fueling_dwell_time_hr_per_yr
        )
        + np.array(oppcostobj.net_net_mr_downtime_hr_per_yr_per_yr),
    }
    return veh_opp_cost_set

fill_annual_tsv(scenario: run_scenario.Scenario) -> pd.DataFrame

This helper method generates a dataframe of annual vehicle miles traveled (vmt) - Annual Travel [mi/yr]

Parameters:

Name Type Description Default
scenario run_scenario.Scenario

Scenario object of current selection

required

Returns:

Name Type Description
df pd.DataFrame

Dataframe containing Annual Travel [mi/yr]

Source code in t3co/tco/tcocalc.py
Python
def fill_annual_tsv(scenario: run_scenario.Scenario) -> pd.DataFrame:
    """
    This helper method generates a dataframe of annual vehicle miles traveled (vmt) - Annual Travel [mi/yr]

    Args:
        scenario (run_scenario.Scenario): Scenario object of current selection

    Returns:
        df (pd.DataFrame): Dataframe containing Annual Travel [mi/yr]
    """
    columns = ["Age [yr]", "Annual Travel [mi/yr]"]
    data = []

    veh_life_years = int(scenario.vehicle_life_yr)

    vmt = scenario.vmt
    assert len(vmt) == veh_life_years, (
        f"vehicle_life_yr of {veh_life_years} & length of input vmt {len(vmt)} do not align; "
        f"vehicle_life_yr life years & number of years in vmt should match\n"
        f"[vehicle_life_yr/[VMT_1,...,VMT_N]]:[{veh_life_years}/{vmt}]"
    )

    for i in range(0, veh_life_years):
        miles = vmt[i]
        # i is age, give it a vmt value for each entry in vmt or defer to last vmt entry
        data.append([i, miles])

    df = pd.DataFrame(data, columns=columns)

    return df

fill_downtimelabor_cost_tsv(scenario: run_scenario.Scenario, oppy_cost_set: dict) -> pd.DataFrame

This helper method generates a dataframe containing fueling downtime and M&R downtime costs in Cost [$/Yr]

Parameters:

Name Type Description Default
scenario run_scenario.Scenario

Scenario object of current selection

required
oppy_cost_set dict

Dictionary containing fueling_downtime_oppy_cost_dol_per_yr,fueling_dwell_labor_cost_dol_per_yr and mr_downtime_oppy_cost_dol_per_yr

required

Returns:

Name Type Description
df pd.DataFrame

Dataframe containing fueling and MR downtime costs in Cost [$/Yr]

Source code in t3co/tco/tcocalc.py
Python
def fill_downtimelabor_cost_tsv(
    scenario: run_scenario.Scenario, oppy_cost_set: dict
) -> pd.DataFrame:
    """
    This helper method generates a dataframe containing fueling downtime and M&R downtime costs in Cost [$/Yr]

    Args:
        scenario (run_scenario.Scenario): Scenario object of current selection
        oppy_cost_set (dict): Dictionary containing fueling_downtime_oppy_cost_dol_per_yr,fueling_dwell_labor_cost_dol_per_yr and mr_downtime_oppy_cost_dol_per_yr

    Returns:
        df (pd.DataFrame): Dataframe containing fueling and MR downtime costs in Cost [$/Yr]
    """
    columns = ["Age [yr]", "Category", "Cost [$/Yr]"]
    data = []

    veh_life_years = int(scenario.vehicle_life_yr)

    fueling_downtime_oppy_cost_dol_per_yr = oppy_cost_set[
        "fueling_downtime_oppy_cost_dol_per_yr"
    ]
    fueling_dwell_labor_cost_dol_per_yr = oppy_cost_set[
        "fueling_dwell_labor_cost_dol_per_yr"
    ]
    mr_downtime_oppy_cost_dol_per_yr = oppy_cost_set["mr_downtime_oppy_cost_dol_per_yr"]

    for i in range(0, veh_life_years):
        # downtime_costs_Dol = fueling_downtime_oppy_cost_dol[i] + MR_downtime_cost_Dol[i]
        # i is age, give it a VMT value for each entry in VMT or defer to last VMT entry
        data.append(
            [i, "fueling downtime cost", fueling_downtime_oppy_cost_dol_per_yr[i]]
        )
        data.append([i, "fueling labor cost", fueling_dwell_labor_cost_dol_per_yr[i]])
        data.append([i, "MR downtime cost", mr_downtime_oppy_cost_dol_per_yr[i]])

    df = pd.DataFrame(data, columns=columns)

    return df

fill_fuel_eff_file(vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario, mpgge_dict: dict) -> pd.DataFrame

This helper method generates a dataframe of Fuel Efficiency [mi/gge] For PHEV, cd_grid_electric_mpgge, cd_fuel_mpgge, and cs_fuel_mpgge For BEV, grid_mpgge For HEV and CONV, mpgge

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object of analysis vehicle

required
scenario run_scenario.Scenario

Scenario object of current selection

required
mpgge_dict dict

MPGGE dictionary from fueleconomy.get_mpgge()

required

Returns:

Name Type Description
fefdata pd.DataFrame

Dictionary containing Fuel Efficiency [mi/gge]

Source code in t3co/tco/tcocalc.py
Python
def fill_fuel_eff_file(
    vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario, mpgge_dict: dict
) -> pd.DataFrame:
    """
    This helper method generates a dataframe of Fuel Efficiency [mi/gge]
    For PHEV, cd_grid_electric_mpgge, cd_fuel_mpgge, and cs_fuel_mpgge
    For BEV, grid_mpgge
    For HEV and CONV, mpgge

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object of analysis vehicle
        scenario (run_scenario.Scenario): Scenario object of current selection
        mpgge_dict (dict): MPGGE dictionary from fueleconomy.get_mpgge()

    Returns:
        fefdata (pd.DataFrame): Dictionary containing Fuel Efficiency [mi/gge]
    """
    # this fuel efficiency value is for over all fuel costs
    # so it needs to factor in charging efficiency, if applicable

    if vehicle.veh_pt_type == gl.PHEV:
        # grid efficiency charge depleting mpgge first, then charge sustaining
        mpgges = [
            mpgge_dict["cd_grid_electric_mpgge"],
            mpgge_dict["cd_fuel_mpgge"],
            mpgge_dict["cs_fuel_mpgge"],
        ]
    if vehicle.veh_pt_type == gl.BEV:
        mpgges = [mpgge_dict["grid_mpgge"]]
    if vehicle.veh_pt_type in [gl.HEV, gl.CONV]:
        mpgges = [mpgge_dict["mpgge"]]
    vehicle_segment_name = scenario.segment_name
    model_year = int(scenario.model_year)
    region = scenario.region
    vocation = scenario.vocation

    # get age of vehicle
    # if age < 0: age = "*"
    # can ignore age, so always make it "*" - Kevin Bennion, 8/12/2019
    age = "*"

    fuels = scenario.fuel_type

    assert len(fuels) == len(mpgges), f"fuels/mpgges: {fuels}/{mpgges}"
    if (
        vehicle.veh_pt_type == gl.PHEV
    ):  # FIXME: this assumes the PHEV is plug-in hybrid electric with diesel. In future, scenario.fuel_type should be parsed to see if it is a electric/gasoline PHEV, for example.
        assert (
            "cd_electricity" in fuels[0]
        ), r'fuels for electric/diesel PHEVs must be of format: ["cd_electricity", "cd_diesel", "cs_diesel"]'
        assert (
            "cd_diesel" in fuels[1]
        ), r'fuels for electric/diesel PHEVs must be of format: ["cd_electricity", "cd_diesel", "cs_diesel"]'
        assert (
            "cs_diesel" in fuels[2]
        ), r'fuels for electric/diesel PHEVs must be of format: ["cd_electricity", "cd_diesel", "cs_diesel"]'

    data = []
    for fuel_type, mpgge in zip(fuels, mpgges):
        data.append(
            [model_year, region, vehicle_segment_name, vocation, fuel_type, mpgge, age]
        )
    fefdata = pd.DataFrame(
        data,
        columns=[
            "Model Year",
            "Region",
            "Vehicle",
            "Vocation",
            "Fuel",
            "Fuel Efficiency [mi/gge]",
            "Age [yr]",
        ],
    )

    return fefdata

fill_fuel_expense_tsv(vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario) -> pd.DataFrame

This helper method generates a dataframe of fuel operating costs in Cost [$/gge]

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object of analysis vehicle

required
scenario run_scenario.Scenario

Scenario object of current selection

required

Raises:

Type Description
Exception

Invalid fuel_type type

Returns:

Name Type Description
df pd.DataFrame

Dataframe containing fuel operating costs in Cost [$/gge]

Source code in t3co/tco/tcocalc.py
Python
def fill_fuel_expense_tsv(
    vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario
) -> pd.DataFrame:
    """
    This helper method generates a dataframe of fuel operating costs in Cost [$/gge]

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object of analysis vehicle
        scenario (run_scenario.Scenario): Scenario object of current selection

    Raises:
        Exception: Invalid fuel_type type

    Returns:
        df (pd.DataFrame): Dataframe containing fuel operating costs in Cost [$/gge]
    """

    fuels = scenario.fuel_type

    if vehicle.veh_pt_type in [gl.CONV, gl.HEV]:
        assert scenario.fuel_type[0].lower() in [
            "cng",
            "gasoline",
            "diesel",
            "hydrogen",
        ]
    elif vehicle.veh_pt_type in [gl.BEV]:
        assert scenario.fuel_type[0].lower() in ["electricity"]
    elif vehicle.veh_pt_type == gl.PHEV:
        assert (
            "cd_electricity" in fuels[0]
        ), r'fuels must be of format: ["cd_electricity", "cd_diesel", "cs_diesel"]'
        assert (
            "cd_diesel" in fuels[1]
        ), r'fuels must be of format: ["cd_electricity", "cd_diesel", "cs_diesel"]'
        assert (
            "cs_diesel" in fuels[2]
        ), r'fuels must be of format: ["cd_electricity", "cd_diesel", "cs_diesel"]'

    veh_life_span = int(scenario.vehicle_life_yr)
    cat = "Fuel"
    columns = ["Year", "Fuel", "Category", "Cost [$/gge]"]
    data = []
    regdf = pd.read_csv(gl.REGIONAL_FUEL_PRICES_BY_TYPE_BY_YEAR)
    regdf = regdf.set_index("Fuel")
    for fuel_type in fuels:
        # cat = fuel_type
        for yr in range(
            int(scenario.model_year), int(scenario.model_year + veh_life_span)
        ):
            regdf = regdf[regdf["Region"] == scenario.region]
            # all costs are converted to $ per gallon gasoline equivalent
            # TODO, may want to be more explicit than just finding substrings
            if "diesel" in fuel_type.lower() and "bio" not in fuel_type.lower():
                dieselDolPerGal = regdf.loc["dieselDolPerGal", str(yr)]
                Dslgge = 1 * (33.7 / 37.95)
                cost = dieselDolPerGal * Dslgge
            elif "gasoline" in fuel_type.lower():
                gasolineDolPerGal = regdf.loc["gasolineDolPerGal", str(yr)]
                cost = gasolineDolPerGal
            elif "electricity" in fuel_type.lower():
                dolPerKwh = regdf.loc["dolPerKwh", str(yr)]
                cost = dolPerKwh * 33.7  # 33.41 kwh per gallon of gasoline
            elif fuel_type.lower() == "cng":
                CNGDolPerGge = regdf.loc["CNGDolPerGge", str(yr)]
                cost = CNGDolPerGge
            elif fuel_type.lower() == "hydrogen":
                hydrogenDolPerGGE = regdf.loc["hydrogenDolPerGGE", str(yr)]
                cost = hydrogenDolPerGGE
            else:
                raise Exception(
                    f"TCO fuel calc: fill_fuel_expense_tsv:: unknown fuel type {fuel_type}"
                )
            data.append([yr, fuel_type, cat, cost])

    df = pd.DataFrame(data, columns=columns)

    return df

fill_fuel_split_tsv(vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario, mpgge: dict) -> pd.DataFrame

This helper method generates a dataframe of fraction of travel in each fuel type as Fraction of Travel [mi/mi]

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object of analysis vehicle

required
scenario run_scenario.Scenario

Scenario object of current selection

required
mpgge dict

MPGGE dictionary from fueleconomy.get_mpgge()

required

Returns:

Name Type Description
df pd.DataFrame

Dataframe containing fraction of travel in each fuel type as Fraction of Travel [mi/mi]

Source code in t3co/tco/tcocalc.py
Python
def fill_fuel_split_tsv(
    vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario, mpgge: dict
) -> pd.DataFrame:
    """
    This helper method generates a dataframe of fraction of travel in each fuel type as Fraction of Travel [mi/mi]

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object of analysis vehicle
        scenario (run_scenario.Scenario): Scenario object of current selection
        mpgge (dict): MPGGE dictionary from fueleconomy.get_mpgge()

    Returns:
        df (pd.DataFrame): Dataframe containing fraction of travel in each fuel type as Fraction of Travel [mi/mi]
    """
    columns = ["Vehicle", "Fuel", "Vocation", "Fraction of Travel [mi/mi]"]
    vocation = scenario.vocation
    vehicle_segment = scenario.segment_name
    fuels = scenario.fuel_type

    if vehicle.veh_pt_type == gl.PHEV:
        uf = run_scenario.get_phev_util_factor(scenario, vehicle, mpgge)

    if vehicle.veh_pt_type != gl.PHEV:
        frac_time_traveled_mi_mi = 1
        data = [[vehicle_segment, fuels[0], vocation, frac_time_traveled_mi_mi]]
    else:
        data = [
            [vehicle_segment, fuels[0], vocation, uf],  # cd_electricity
            [vehicle_segment, fuels[1], vocation, uf],  # cd_diesel
            [vehicle_segment, fuels[2], vocation, 1 - uf],  # cs_diesel
        ]

    df = pd.DataFrame(data, columns=columns)

    return df

fill_insurance_tsv(scenario: run_scenario.Scenario, veh_cost_set: dict) -> pd.DataFrame

This helper method generates a dataframe containing vehicle insurance costs as Cost [$/Yr]

Parameters:

Name Type Description Default
scenario run_scenario.Scenario

Scenario object of current selection

required
veh_cost_set dict

Dictionary containing MSRP costs

required

Returns:

Name Type Description
df pd.DataFrame

Dataframe containing insurance costs in Cost [$/Yr]

Source code in t3co/tco/tcocalc.py
Python
def fill_insurance_tsv(
    scenario: run_scenario.Scenario, veh_cost_set: dict
) -> pd.DataFrame:
    """
    This helper method generates a dataframe containing vehicle insurance costs as Cost [$/Yr]

    Args:
        scenario (run_scenario.Scenario): Scenario object of current selection
        veh_cost_set (dict): Dictionary containing MSRP costs

    Returns:
        df (pd.DataFrame): Dataframe containing insurance costs in Cost [$/Yr]
    """
    columns = ["Age [yr]", "Category", "Cost [$/Yr]"]
    data = []

    veh_life_years = int(scenario.vehicle_life_yr)

    insurance_rates = scenario.insurance_rates_pct_per_yr
    assert len(insurance_rates) >= veh_life_years, (
        f"vehicle_life_yr of {veh_life_years} & length of input insurance rates {len(insurance_rates)} do not align; "
        f"vehicle_life_yr life years & number of years in vmt should match\n"
        f"[vehicle_life_yr/[VMT_1,...,VMT_N]]:[{veh_life_years}/{insurance_rates}]"
    )

    MSRP = veh_cost_set["msrp"]
    for i in range(0, veh_life_years):
        insurance_costperyear = insurance_rates[i] * MSRP / 100
        # i is age, give it a vmt value for each entry in vmt or defer to last vmt entry
        data.append([i, "insurance", insurance_costperyear])

    df = pd.DataFrame(data, columns=columns)

    return df

fill_market_share_tsv(scenario: run_scenario.Scenario, num_vs: int = 1) -> pd.DataFrame

This helper method generates a dataframe containing market share of current vehicle selection per vehicle sold

Parameters:

Name Type Description Default
scenario run_scenario.Scenario

Scenario object of current selection

required
num_vs int

Number of vehicles. Defaults to 1.

1

Returns:

Name Type Description
df pd.DataFrame

Dataframe containing market share of current vehicle in Market Share [veh/veh]

Source code in t3co/tco/tcocalc.py
Python
def fill_market_share_tsv(
    scenario: run_scenario.Scenario, num_vs: int = 1
) -> pd.DataFrame:
    """
    This helper method generates a dataframe containing market share of current vehicle selection per vehicle sold

    Args:
        scenario (run_scenario.Scenario): Scenario object of current selection
        num_vs (int, optional): Number of vehicles. Defaults to 1.

    Returns:
        df (pd.DataFrame): Dataframe containing market share of current vehicle in Market Share [veh/veh]
    """

    vocation = scenario.vocation
    vehicle = scenario.segment_name
    reg = scenario.region

    veh_life_years = int(scenario.vehicle_life_yr)
    model_year = int(scenario.model_year)
    data = []
    columns = ["Vehicle", "Vocation", "Model Year", "Region", "Market Share [veh/veh]"]
    data.append([vehicle, vocation, model_year, reg, 1 / num_vs])
    for yr in range(model_year + 1, model_year + veh_life_years):
        data.append([vehicle, vocation, yr, reg, 0])

    df = pd.DataFrame(data, columns=columns)

    return df

fill_reg_sales_tsv(scenario: run_scenario.Scenario, num_vs: int = 1) -> pd.DataFrame

This helper method generates a dataframe containing vehicle sales per year - Sales [veh]

Parameters:

Name Type Description Default
scenario run_scenario.Scenario

Scenario object of current selection

required
num_vs int

Number of vehicles. Defaults to 1.

1

Returns:

Name Type Description
df pd.DataFrame

Dataframe containing vehicle sales in Sales [veh]

Source code in t3co/tco/tcocalc.py
Python
def fill_reg_sales_tsv(
    scenario: run_scenario.Scenario, num_vs: int = 1
) -> pd.DataFrame:
    """
    This helper method generates a dataframe containing vehicle sales per year - Sales [veh]

    Args:
        scenario (run_scenario.Scenario): Scenario object of current selection
        num_vs (int, optional): Number of vehicles. Defaults to 1.

    Returns:
        df (pd.DataFrame): Dataframe containing vehicle sales in Sales [veh]
    """
    veh_life_years = int(scenario.vehicle_life_yr)
    model_year = int(scenario.model_year)
    reg = scenario.region

    columns = ["Model Year", "Region", "Sales [veh]"]
    data = []
    for yr in range(model_year, veh_life_years + model_year):
        if yr == model_year:
            data.append([yr, reg, num_vs])
        else:
            data.append([yr, reg, 0])

    df = pd.DataFrame(data, columns=columns)

    return df

fill_residual_cost_tsc(vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario, veh_cost_set: dict) -> pd.DataFrame

This helper method generates a dataframe of residual costs as Cost [$/Yr]

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object of analysis vehicle

required
scenario run_scenario.Scenario

Scenario object of current selection

required
veh_cost_set dict

Dictionary containing MSRP costs

required

Returns:

Name Type Description
df pd.DataFrame

Dataframe containing vehicle residual costs as Cost [$/Yr]

Source code in t3co/tco/tcocalc.py
Python
def fill_residual_cost_tsc(
    vehicle: fastsim.vehicle.Vehicle,
    scenario: run_scenario.Scenario,
    veh_cost_set: dict,
) -> pd.DataFrame:
    """
    This helper method generates a dataframe of residual costs as Cost [$/Yr]

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object of analysis vehicle
        scenario (run_scenario.Scenario): Scenario object of current selection
        veh_cost_set (dict): Dictionary containing MSRP costs

    Returns:
        df (pd.DataFrame): Dataframe containing vehicle residual costs as Cost [$/Yr]
    """
    columns = ["Age [yr]", "Category", "Cost [$/Yr]"]
    data = []

    veh_life_years = int(scenario.vehicle_life_yr)

    residual_rate = find_residual_rates(vehicle, scenario)

    MSRP = veh_cost_set["msrp"]
    for i in range(0, veh_life_years):
        if i == veh_life_years - 1:
            residual_cost = -residual_rate * MSRP
        else:
            residual_cost = 0
        data.append([i, "residual cost", residual_cost])

    df = pd.DataFrame(data, columns=columns)

    return df

fill_survival_tsv(scenario: run_scenario.Scenario, num_vs=1) -> pd.DataFrame

This helper method generates a dataframe containing surviving vehicles as Surviving Vehicles [veh/veh]

Parameters:

Name Type Description Default
scenario run_scenario.Scenario

Scenario object of current selection

required
num_vs int

Number of vehicles. Defaults to 1.

1

Returns:

Name Type Description
df pd.DataFrame

Dataframe containing number of surviving vehicles on road in Surviving Vehicles [veh/veh]

Source code in t3co/tco/tcocalc.py
Python
def fill_survival_tsv(scenario: run_scenario.Scenario, num_vs=1) -> pd.DataFrame:
    """
    This helper method generates a dataframe containing surviving vehicles as Surviving Vehicles [veh/veh]

    Args:
        scenario (run_scenario.Scenario): Scenario object of current selection
        num_vs (int, optional): Number of vehicles. Defaults to 1.

    Returns:
        df (pd.DataFrame): Dataframe containing number of surviving vehicles on road in Surviving Vehicles [veh/veh]
    """

    columns = ["Age [yr]", "Surviving Vehicles [veh/veh]"]
    data = []
    veh_life_span = int(scenario.vehicle_life_yr)
    for yr in range(0, veh_life_span):
        data.append([yr, num_vs / num_vs])

    df = pd.DataFrame(data, columns=columns)

    return df

fill_trav_exp_tsv(vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario) -> pd.DataFrame

This helper method generates a dataframe containing maintenance costs in Cost [$/mi]

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object of analysis vehicle

required
scenario run_scenario.Scenario

Scenario object of current selection

required

Returns:

Name Type Description
df pd.DataFrame

Dataframe containing maintenance costs in Cost [$/mi]

Source code in t3co/tco/tcocalc.py
Python
def fill_trav_exp_tsv(
    vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario
) -> pd.DataFrame:
    """
    This helper method generates a dataframe containing maintenance costs in Cost [$/mi]

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object of analysis vehicle
        scenario (run_scenario.Scenario): Scenario object of current selection

    Returns:
        df (pd.DataFrame): Dataframe containing maintenance costs in Cost [$/mi]
    """

    columns = ["Year", "Region", "Vocation", "Vehicle", "Category", "Cost [$/mi]"]
    region = scenario.region
    vocation = scenario.vocation
    vehicle_name = scenario.segment_name
    maint = scenario.maint_oper_cost_dol_per_mi
    maint = list(np.float_(maint.strip(" ][").split(",")))
    veh_life_years = int(scenario.vehicle_life_yr)

    assert len(maint) == veh_life_years, (
        f"vehicle_life_yr of {veh_life_years} & length of input maint_oper_cost_dol_per_mi {len(maint)} do not align; "
        f"vehicle_life_yr life years & number of years in vmt should match\n"
        f"[vehicle_life_yr/[maint_oper_cost_dol_per_mi_1,...,maint_oper_cost_dol_per_mi_N]]:[{veh_life_years}/{maint}]"
    )
    data = []
    for i, yr in enumerate(
        range(int(scenario.model_year), int(scenario.model_year + veh_life_years))
    ):
        l1 = [yr, region, vocation, vehicle_name, "maintenance", maint[i]]
        data.append(l1)

    df = pd.DataFrame(data=data, columns=columns)

    return df

fill_veh_expense_file(scenario: run_scenario.Scenario, cost_set: dict) -> pd.DataFrame

This helper method generates a dataframe of MSRP breakdown costs as Cost [$/veh]

Parameters:

Name Type Description Default
scenario run_scenario.Scenario

Scenario object of current selection

required
cost_set dict

Dictionary containing MSRP breakdown cost components

required

Returns:

Name Type Description
vexpdf pd.DataFrame

Dataframe containing MSRP components costs as Cost [$/veh]

Source code in t3co/tco/tcocalc.py
Python
def fill_veh_expense_file(
    scenario: run_scenario.Scenario, cost_set: dict
) -> pd.DataFrame:
    """
    This helper method generates a dataframe of MSRP breakdown costs as Cost [$/veh]

    Args:
        scenario (run_scenario.Scenario): Scenario object of current selection
        cost_set (dict): Dictionary containing MSRP breakdown cost components

    Returns:
        vexpdf (pd.DataFrame): Dataframe containing MSRP components costs as Cost [$/veh]
    """
    # read in scenario values needed, such as segment name, vocation, etc.
    vehicle = scenario.segment_name
    vocation = scenario.vocation
    model_year = int(scenario.model_year)

    data = [
        [vehicle, vocation, model_year, cost_set["Glider"], "Glider"],
        [vehicle, vocation, model_year, cost_set["Fuel converter"], "Fuel converter"],
        [vehicle, vocation, model_year, cost_set["Fuel Storage"], "Fuel Storage"],
        [
            vehicle,
            vocation,
            model_year,
            cost_set["Motor & power electronics"],
            "Motor & power electronics",
        ],
        [vehicle, vocation, model_year, cost_set["Plug"], "Plug"],
        [vehicle, vocation, model_year, cost_set["Battery"], "Battery"],
        [
            vehicle,
            vocation,
            model_year,
            cost_set["Battery replacement"],
            "Battery replacement",
        ],
        [vehicle, vocation, model_year, cost_set["Purchase tax"], "Purchase tax"],
    ]
    vexpdf = pd.DataFrame(
        data, columns=["Vehicle", "Vocation", "Model Year", "Cost [$/veh]", "Category"]
    )

    return vexpdf

find_residual_rates(vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario) -> float

This helper method gets the residual rates from ResidualValues.csv

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object of analysis vehicle

required
scenario run_scenario.Scenario

Scenario object of current selection

required

Returns:

Name Type Description
residual_rates float

Residual rate as percentage of MSRP

Source code in t3co/tco/tcocalc.py
Python
def find_residual_rates(
    vehicle: fastsim.vehicle.Vehicle, scenario: run_scenario.Scenario
) -> float:  # finds residual rate at end of vehicle life
    """
    This helper method gets the residual rates from ResidualValues.csv

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object of analysis vehicle
        scenario (run_scenario.Scenario): Scenario object of current selection

    Returns:
        residual_rates (float): Residual rate as percentage of MSRP
    """
    residual_rates_all = pd.read_csv(gl.RESIDUAL_VALUE_PER_YEAR)
    vehicle_class = scenario.vehicle_class
    powertrain_type = vehicle.veh_pt_type.lower()
    year = str(scenario.vehicle_life_yr)
    residual_rates = residual_rates_all.loc[
        (residual_rates_all["VehicleClass"].str.lower() == vehicle_class)
        & (residual_rates_all["PowertrainType"].str.lower() == powertrain_type)
    ][year].values[0]
    return residual_rates