Skip to content

Run Scenario Sub-Module

t3co.run.run_scenario

Module for loading vehicles, scenarios, running them and managing them

Config dataclass

This class reads T3COConfig.csv file containing analysis attributes like vehicle and scenario paths, TCO_method, and scenario attribute overrides.

Source code in t3co/run/run_scenario.py
Python
@dataclass
class Config:
    """
    This class reads T3COConfig.csv file containing analysis attributes like vehicle and scenario paths, TCO_method, and scenario attribute overrides.

    """

    analysis_id: int = 0
    analysis_name: str = ""
    vehicle_file: str = ""
    scenario_file: str = ""
    dst_dir: str = ""
    resfile_suffix: str = None
    write_tsv: bool = False
    selections: str = ""
    # selections: list = field(default_factory=list)
    vehicle_life_yr: float = 0
    drive_cycle: str = None
    # Fueling
    ess_max_charging_power_kw: float = 0
    fs_fueling_rate_kg_per_min: float = 0
    fs_fueling_rate_gasoline_gpm: float = 0
    fs_fueling_rate_diesel_gpm: float = 0

    TCO_method: str = "DIRECT"

    # Optimization
    algorithms: str = ""
    lw_imp_curves: str = ""
    eng_eff_imp_curves: str = ""
    aero_drag_imp_curves: str = ""
    lw_imp_curve_sel: str = ""
    eng_eff_imp_curve_sel: str = ""
    aero_drag_imp_curve_sel: str = ""
    skip_all_opt: bool = True
    constraint_range: bool = False
    constraint_accel: bool = False
    constraint_grade: bool = False
    objective_tco: bool = False
    constraint_c_rate: bool = False
    constraint_trace_miss_dist_percent_on: bool = False
    objective_phev_minimize_fuel_use: bool = False

    # Opportunity Cost
    activate_tco_payload_cap_cost_multiplier: bool = False
    activate_tco_fueling_dwell_time_cost: bool = False
    fdt_frac_full_charge_bounds: list = field(default_factory=list)
    activate_mr_downtime_cost: bool = False

    def from_file(self, filename: str, analysis_id: int) -> Self:
        """
        This method generates a Config dictionary from CSV file and calls Config.from_dict

        Args:
            filename (str): path of input T3CO Config file
            analysis_id (int): analysis ID selections

        Returns:
            Self.from_dict: method that gets Config instance from config_dict
        """
        filename = str(filename)

        config_df = (
            pd.read_csv(filename, index_col="analysis_id")
            .loc[analysis_id]
            .replace({np.nan: None})
        )
        config_dict = config_df.to_dict()

        return self.from_dict(config_dict=config_dict)

    def from_dict(self, config_dict: dict) -> Self:
        """
        This method generates a Config instance from config_dict

        Args:
            config_dict (dict): dictionary containing fields from T3CO Config input CSV file

        Returns:
            Self: Config instance containining all values from T3CO Config CSV file
        """
        try:
            config_dict["selections"] = ast.literal_eval(config_dict["selections"])
        except:  # noqa: E722
            config_dict["selections"] = int(config_dict["selections"])
        self.__dict__.update(config_dict)

    def validate_analysis_id(self, filename: str, analysis_id: int = 0) -> Self:
        """
        This method validates that correct analysis id is input

        Args:
            filename (str): T3CO Config input CSV file path

        Raises:
            Exception: Error if analysis_id not found
        """
        filename = str(filename)
        config_df = pd.read_csv(filename)
        print(f"Try these analysis IDs instead: {list(config_df['analysis_id'])}")
        assert (
            analysis_id in config_df["analysis_id"]
        ), "Given analysis_id not in config input file"
        raise Exception

    def check_drivecycles_and_create_selections(self, config_file: str | Path):
        """
        This method checks if the config.drive_cycle input is a file or a folder. If a folder is provided, then it creates a list of all selections for each drivecycle in the folders as config.dc_files

        Args:
            config_file (str|Path): File path of config file
        """
        self.dc_files = None
        try:
            if Path(self.drive_cycle).is_absolute():
                dc_folder_path = Path(self.drive_cycle)
            else:
                dc_folder_path = Path(config_file).parent / self.drive_cycle
            if not dc_folder_path.exists():
                try:
                    dc_folder_path = gl.OPTIMIZATION_DRIVE_CYCLES / self.drive_cycle
                except:
                    print(f"Drivecycle folder does not exist: {dc_folder_path}")

            if Path(dc_folder_path).is_dir():
                self.dc_files = [p.absolute() for p in dc_folder_path.rglob("*.csv")]
                selections_list = list(self.selections)
                self.selections = []
                for selection in selections_list:
                    for i in range(len(self.dc_files)):
                        self.selections.append(str(selection) + "_" + str(i).zfill(3))
            else:
                self.dc_files = None
        except:
            Exception

TCO_method: str = 'DIRECT' class-attribute instance-attribute

activate_mr_downtime_cost: bool = False class-attribute instance-attribute

activate_tco_fueling_dwell_time_cost: bool = False class-attribute instance-attribute

activate_tco_payload_cap_cost_multiplier: bool = False class-attribute instance-attribute

aero_drag_imp_curve_sel: str = '' class-attribute instance-attribute

aero_drag_imp_curves: str = '' class-attribute instance-attribute

algorithms: str = '' class-attribute instance-attribute

analysis_id: int = 0 class-attribute instance-attribute

analysis_name: str = '' class-attribute instance-attribute

constraint_accel: bool = False class-attribute instance-attribute

constraint_c_rate: bool = False class-attribute instance-attribute

constraint_grade: bool = False class-attribute instance-attribute

constraint_range: bool = False class-attribute instance-attribute

constraint_trace_miss_dist_percent_on: bool = False class-attribute instance-attribute

drive_cycle: str = None class-attribute instance-attribute

dst_dir: str = '' class-attribute instance-attribute

eng_eff_imp_curve_sel: str = '' class-attribute instance-attribute

eng_eff_imp_curves: str = '' class-attribute instance-attribute

ess_max_charging_power_kw: float = 0 class-attribute instance-attribute

fdt_frac_full_charge_bounds: list = field(default_factory=list) class-attribute instance-attribute

fs_fueling_rate_diesel_gpm: float = 0 class-attribute instance-attribute

fs_fueling_rate_gasoline_gpm: float = 0 class-attribute instance-attribute

fs_fueling_rate_kg_per_min: float = 0 class-attribute instance-attribute

lw_imp_curve_sel: str = '' class-attribute instance-attribute

lw_imp_curves: str = '' class-attribute instance-attribute

objective_phev_minimize_fuel_use: bool = False class-attribute instance-attribute

objective_tco: bool = False class-attribute instance-attribute

resfile_suffix: str = None class-attribute instance-attribute

scenario_file: str = '' class-attribute instance-attribute

selections: str = '' class-attribute instance-attribute

skip_all_opt: bool = True class-attribute instance-attribute

vehicle_file: str = '' class-attribute instance-attribute

vehicle_life_yr: float = 0 class-attribute instance-attribute

write_tsv: bool = False class-attribute instance-attribute

__init__(analysis_id: int = 0, analysis_name: str = '', vehicle_file: str = '', scenario_file: str = '', dst_dir: str = '', resfile_suffix: str = None, write_tsv: bool = False, selections: str = '', vehicle_life_yr: float = 0, drive_cycle: str = None, ess_max_charging_power_kw: float = 0, fs_fueling_rate_kg_per_min: float = 0, fs_fueling_rate_gasoline_gpm: float = 0, fs_fueling_rate_diesel_gpm: float = 0, TCO_method: str = 'DIRECT', algorithms: str = '', lw_imp_curves: str = '', eng_eff_imp_curves: str = '', aero_drag_imp_curves: str = '', lw_imp_curve_sel: str = '', eng_eff_imp_curve_sel: str = '', aero_drag_imp_curve_sel: str = '', skip_all_opt: bool = True, constraint_range: bool = False, constraint_accel: bool = False, constraint_grade: bool = False, objective_tco: bool = False, constraint_c_rate: bool = False, constraint_trace_miss_dist_percent_on: bool = False, objective_phev_minimize_fuel_use: bool = False, activate_tco_payload_cap_cost_multiplier: bool = False, activate_tco_fueling_dwell_time_cost: bool = False, fdt_frac_full_charge_bounds: list = list(), activate_mr_downtime_cost: bool = False) -> None

check_drivecycles_and_create_selections(config_file: str | Path)

This method checks if the config.drive_cycle input is a file or a folder. If a folder is provided, then it creates a list of all selections for each drivecycle in the folders as config.dc_files

Parameters:

Name Type Description Default
config_file str | Path

File path of config file

required
Source code in t3co/run/run_scenario.py
Python
def check_drivecycles_and_create_selections(self, config_file: str | Path):
    """
    This method checks if the config.drive_cycle input is a file or a folder. If a folder is provided, then it creates a list of all selections for each drivecycle in the folders as config.dc_files

    Args:
        config_file (str|Path): File path of config file
    """
    self.dc_files = None
    try:
        if Path(self.drive_cycle).is_absolute():
            dc_folder_path = Path(self.drive_cycle)
        else:
            dc_folder_path = Path(config_file).parent / self.drive_cycle
        if not dc_folder_path.exists():
            try:
                dc_folder_path = gl.OPTIMIZATION_DRIVE_CYCLES / self.drive_cycle
            except:
                print(f"Drivecycle folder does not exist: {dc_folder_path}")

        if Path(dc_folder_path).is_dir():
            self.dc_files = [p.absolute() for p in dc_folder_path.rglob("*.csv")]
            selections_list = list(self.selections)
            self.selections = []
            for selection in selections_list:
                for i in range(len(self.dc_files)):
                    self.selections.append(str(selection) + "_" + str(i).zfill(3))
        else:
            self.dc_files = None
    except:
        Exception

from_dict(config_dict: dict) -> Self

This method generates a Config instance from config_dict

Parameters:

Name Type Description Default
config_dict dict

dictionary containing fields from T3CO Config input CSV file

required

Returns:

Name Type Description
Self Self

Config instance containining all values from T3CO Config CSV file

Source code in t3co/run/run_scenario.py
Python
def from_dict(self, config_dict: dict) -> Self:
    """
    This method generates a Config instance from config_dict

    Args:
        config_dict (dict): dictionary containing fields from T3CO Config input CSV file

    Returns:
        Self: Config instance containining all values from T3CO Config CSV file
    """
    try:
        config_dict["selections"] = ast.literal_eval(config_dict["selections"])
    except:  # noqa: E722
        config_dict["selections"] = int(config_dict["selections"])
    self.__dict__.update(config_dict)

from_file(filename: str, analysis_id: int) -> Self

This method generates a Config dictionary from CSV file and calls Config.from_dict

Parameters:

Name Type Description Default
filename str

path of input T3CO Config file

required
analysis_id int

analysis ID selections

required

Returns:

Type Description
Self

Self.from_dict: method that gets Config instance from config_dict

Source code in t3co/run/run_scenario.py
Python
def from_file(self, filename: str, analysis_id: int) -> Self:
    """
    This method generates a Config dictionary from CSV file and calls Config.from_dict

    Args:
        filename (str): path of input T3CO Config file
        analysis_id (int): analysis ID selections

    Returns:
        Self.from_dict: method that gets Config instance from config_dict
    """
    filename = str(filename)

    config_df = (
        pd.read_csv(filename, index_col="analysis_id")
        .loc[analysis_id]
        .replace({np.nan: None})
    )
    config_dict = config_df.to_dict()

    return self.from_dict(config_dict=config_dict)

validate_analysis_id(filename: str, analysis_id: int = 0) -> Self

This method validates that correct analysis id is input

Parameters:

Name Type Description Default
filename str

T3CO Config input CSV file path

required

Raises:

Type Description
Exception

Error if analysis_id not found

Source code in t3co/run/run_scenario.py
Python
def validate_analysis_id(self, filename: str, analysis_id: int = 0) -> Self:
    """
    This method validates that correct analysis id is input

    Args:
        filename (str): T3CO Config input CSV file path

    Raises:
        Exception: Error if analysis_id not found
    """
    filename = str(filename)
    config_df = pd.read_csv(filename)
    print(f"Try these analysis IDs instead: {list(config_df['analysis_id'])}")
    assert (
        analysis_id in config_df["analysis_id"]
    ), "Given analysis_id not in config input file"
    raise Exception

Scenario dataclass

Class object that contains all TCO parameters and performance target (range, grade, accel) information for a vehicle such that performance and TCO can be computed during optimization

Source code in t3co/run/run_scenario.py
Python
@dataclass
class Scenario:
    """
    Class object that contains all TCO parameters and performance target (range, grade, accel) information \
        for a vehicle such that performance and TCO can be computed during optimization
    """

    selection: float = 0
    drive_cycle: str = ""
    use_config: bool = True
    vmt_reduct_per_yr: float = 0
    vmt: list = field(default_factory=list)
    constant_trip_distance_mi: float = 0
    vehicle_life_yr: float = 0
    desired_ess_replacements: float = 0
    discount_rate_pct_per_yr: float = 0

    ess_max_charging_power_kw: float = 0
    ess_cost_dol_per_kw: float = 0
    ess_cost_dol_per_kwh: float = 0
    ess_base_cost_dol: float = 0
    ess_cost_reduction_dol_per_yr: float = 0
    ess_salvage_value_dol: float = 0
    ess_charge_rate_kW: float = 0
    pe_mc_cost_dol_per_kw: float = 0
    pe_mc_base_cost_dol: float = 0
    fc_ice_cost_dol_per_kw: float = 0
    fc_ice_base_cost_dol: float = 0
    fc_fuelcell_cost_dol_per_kw: float = 0
    fs_cost_dol_per_kwh: float = 0
    fs_h2_cost_dol_per_kwh: float = 0
    plug_base_cost_dol: float = 0
    markup_pct: float = 0
    tax_rate_pct: float = 0
    fc_cng_ice_cost_dol_per_kw: float = 0
    fs_cng_cost_dol_per_kwh: float = 0
    vehicle_glider_cost_dol: float = 0
    segment_name: str = ""
    gvwr_kg: float = 0
    gvwr_credit_kg: float = 0
    # a list of fuels, basecase fuel is singleton list
    fuel_type: list = field(default_factory=list)
    maint_oper_cost_dol_per_mi: list = field(default_factory=list)
    vocation: str = ""
    vehicle_class: str = ""
    model_year: float = 0
    region: str = ""
    target_range_mi: float = 0
    min_speed_at_6pct_grade_in_5min_mph: float = 0
    min_speed_at_1p25pct_grade_in_5min_mph: float = 0
    max_time_0_to_60mph_at_gvwr_s: float = 0
    max_time_0_to_30mph_at_gvwr_s: float = 0
    # TDA vars
    lw_imp_curve_sel: str = ""
    eng_eff_imp_curve_sel: str = ""
    aero_drag_imp_curve_sel: str = ""
    # computed vars
    # scenario_gge_regional_temporal_fuel_price: str = ""
    originalcargo_kg: float = (
        -1.0
    )  # if needed, should be assigned immediately after vehicle read in
    # For adding mass from CdA during optimization. veh_kg = glider_kg + powertrainKg, where
    # glider_kg is assigned the value of originalglider_kg + CdAKg
    originalglider_kg: float = -1.0
    # for adding incremental cost to glider from different CdA guesses in moo loop
    originalGliderPrice: float = -1.0
    # for adding percent improvemnt cost to engine efficiency when optimizing CONV
    originalIceDolPerKw: float = -1.0
    # for adjusting fuel converter efficiency based on new peak eff
    origfc_eff_map: list = field(default_factory=list)
    # for adjusting drag coefficient of vehicle
    originaldrag_coef: float = -1

    ess_init_soc_grade: float = -1.0
    ess_init_soc_accel: float = -1.0

    soc_norm_init_for_accel_pct: float = -1
    soc_norm_init_for_grade_pct: float = -1

    # fuel storage
    fs_fueling_rate_gasoline_gpm: float = 0
    fs_fueling_rate_diesel_gpm: float = 0
    fs_fueling_rate_kg_per_min: float = 0

    ### PHEV stuff
    # UF for % of miles in charge depleting mode
    phev_utility_factor_override: float = -1
    phev_utility_factor_computed: float = -1
    # percent (fractional) of motor power for setting kw_fc_demand_on during optimization
    motor_power_override_kw_fc_demand_on_pct: float = -1

    # This will be used to figure out the number of miles travelled before needing to charge
    # must be greater than 0
    shifts_per_year: list = field(default_factory=list)

    missed_trace_correction: bool = False
    max_time_dilation: float = -1
    min_time_dilation: float = -1
    time_dilation_tol: float = -1

    #
    ### Optimization Settings
    #
    skip_opt: bool = False
    knob_min_ess_kwh: list = field(default_factory=list)
    knob_max_ess_kwh: list = field(default_factory=list)
    knob_min_motor_kw: list = field(default_factory=list)
    knob_max_motor_kw: list = field(default_factory=list)
    knob_min_fc_kw: list = field(default_factory=list)
    knob_max_fc_kw: list = field(default_factory=list)
    knob_min_fs_kwh: list = field(default_factory=list)
    knob_max_fs_kwh: list = field(default_factory=list)
    # placeholder for if max_c_rate need to be entered as parameters for each scenario
    # c_rate_kwh_array: list = field(default_factory=list)
    # c_rate_array: list = field(default_factory=list)
    objective_phev_minimize_fuel_use: bool = False
    constraint_c_rate: bool = False
    constraint_range: bool = False
    constraint_accel: bool = False
    constraint_grade: bool = False
    objective_tco: bool = False
    constraint_trace_miss_dist_percent_on: bool = False
    trace_miss_dist_percent: float = 0
    constraint_phev_minimize_fuel_use_on: bool = False
    constraint_phev_minimize_fuel_use_percent: float = 0

    #
    ### TCO Element Activations and vars
    #
    labor_rate_dol_per_hr: float = 0
    downtime_oppy_cost_dol_per_hr: float = 0

    # payload loss factor vars, PLF
    activate_tco_payload_cap_cost_multiplier: bool = True
    plf_ref_veh_empty_mass_kg: float = 0
    plf_scenario_vehicle_empty_kg: float = 0
    plf_reference_vehicle_cargo_capacity_kg: float = 0
    plf_scenario_vehicle_cargo_capacity_kg: float = 0  # includes cargo credit kg
    estimated_lost_payload_kg: float = 0

    # Fueling Dwell time factors, FDT
    activate_tco_fueling_dwell_time_cost: bool = False
    dlf_min_charge_time_hr: float = 0
    fdt_dwpt_fraction_power_pct: float = 0
    fdt_avg_overhead_hr_per_dwell_hr: float = 0
    fdt_frac_full_charge_bounds: float = 0
    fdt_num_free_dwell_trips: float = 0
    fdt_available_freetime_hr: float = 0
    # Insurance factors
    insurance_rates_pct_per_yr: list = field(default_factory=list)

    # Residual Rate
    residual_rate_pct: float = 0

    # Maintenance and Repair Downtime factors MR
    activate_mr_downtime_cost: bool = False
    mr_planned_downtime_hr_per_yr: float = 0
    mr_unplanned_downtime_hr_per_mi: list = field(default_factory=list)
    mr_avg_tire_life_mi: float = 0
    mr_tire_replace_downtime_hr_per_event: float = 0

    def from_config(self, config: Config = None, verbose: bool = False) -> None:
        """
        This method overrides certain scenario fields if use_config is True and config object is not None

        Args:
            config (Config, optional): Config object. Defaults to None.

        """
        fields_override = [
            "vehicle_life_yr",
            "fs_fueling_rate_kg_per_min",
            "fs_fueling_rate_gasoline_gpm",
            "fs_fueling_rate_diesel_gpm",
            "lw_imp_curve_sel",
            "eng_eff_imp_curve_sel",
            "aero_drag_imp_curve_sel",
            "constraint_range",
            "constraint_accel",
            "constraint_grade",
            "objective_tco",
            "constraint_c_rate",
            "constraint_trace_miss_dist_percent_on",
            "objective_phev_minimize_fuel_use",
            "activate_tco_payload_cap_cost_multiplier",
            "activate_tco_fueling_dwell_time_cost",
            "fdt_frac_full_charge_bounds",
            "activate_mr_downtime_cost",
        ]
        if config.dc_files == None:
            fields_override.append("drive_cycle")
        self.fields_overriden = []
        if self.use_config == True and config != None:
            for field_select in fields_override:
                if config.__dict__[field_select] != None:
                    # and (
                    # not self.__dict__[field_select])
                    setattr(self, field_select, config.__getattribute__(field_select))
                    # print(f'field: {field}, type: {type(self.__getattribute__(field))}, value: {self.__getattribute__(field)}')
                    self.fields_overriden.append(field_select)
            print(
                f"Scenario Fields overridden from config: {self.fields_overriden}"
            ) if verbose else None
        else:
            print(
                f"Config file not attached or scenario.use_config set to False: {config}"
            )

activate_mr_downtime_cost: bool = False class-attribute instance-attribute

activate_tco_fueling_dwell_time_cost: bool = False class-attribute instance-attribute

activate_tco_payload_cap_cost_multiplier: bool = True class-attribute instance-attribute

aero_drag_imp_curve_sel: str = '' class-attribute instance-attribute

constant_trip_distance_mi: float = 0 class-attribute instance-attribute

constraint_accel: bool = False class-attribute instance-attribute

constraint_c_rate: bool = False class-attribute instance-attribute

constraint_grade: bool = False class-attribute instance-attribute

constraint_phev_minimize_fuel_use_on: bool = False class-attribute instance-attribute

constraint_phev_minimize_fuel_use_percent: float = 0 class-attribute instance-attribute

constraint_range: bool = False class-attribute instance-attribute

constraint_trace_miss_dist_percent_on: bool = False class-attribute instance-attribute

desired_ess_replacements: float = 0 class-attribute instance-attribute

discount_rate_pct_per_yr: float = 0 class-attribute instance-attribute

dlf_min_charge_time_hr: float = 0 class-attribute instance-attribute

downtime_oppy_cost_dol_per_hr: float = 0 class-attribute instance-attribute

drive_cycle: str = '' class-attribute instance-attribute

eng_eff_imp_curve_sel: str = '' class-attribute instance-attribute

ess_base_cost_dol: float = 0 class-attribute instance-attribute

ess_charge_rate_kW: float = 0 class-attribute instance-attribute

ess_cost_dol_per_kw: float = 0 class-attribute instance-attribute

ess_cost_dol_per_kwh: float = 0 class-attribute instance-attribute

ess_cost_reduction_dol_per_yr: float = 0 class-attribute instance-attribute

ess_init_soc_accel: float = -1.0 class-attribute instance-attribute

ess_init_soc_grade: float = -1.0 class-attribute instance-attribute

ess_max_charging_power_kw: float = 0 class-attribute instance-attribute

ess_salvage_value_dol: float = 0 class-attribute instance-attribute

estimated_lost_payload_kg: float = 0 class-attribute instance-attribute

fc_cng_ice_cost_dol_per_kw: float = 0 class-attribute instance-attribute

fc_fuelcell_cost_dol_per_kw: float = 0 class-attribute instance-attribute

fc_ice_base_cost_dol: float = 0 class-attribute instance-attribute

fc_ice_cost_dol_per_kw: float = 0 class-attribute instance-attribute

fdt_available_freetime_hr: float = 0 class-attribute instance-attribute

fdt_avg_overhead_hr_per_dwell_hr: float = 0 class-attribute instance-attribute

fdt_dwpt_fraction_power_pct: float = 0 class-attribute instance-attribute

fdt_frac_full_charge_bounds: float = 0 class-attribute instance-attribute

fdt_num_free_dwell_trips: float = 0 class-attribute instance-attribute

fs_cng_cost_dol_per_kwh: float = 0 class-attribute instance-attribute

fs_cost_dol_per_kwh: float = 0 class-attribute instance-attribute

fs_fueling_rate_diesel_gpm: float = 0 class-attribute instance-attribute

fs_fueling_rate_gasoline_gpm: float = 0 class-attribute instance-attribute

fs_fueling_rate_kg_per_min: float = 0 class-attribute instance-attribute

fs_h2_cost_dol_per_kwh: float = 0 class-attribute instance-attribute

fuel_type: list = field(default_factory=list) class-attribute instance-attribute

gvwr_credit_kg: float = 0 class-attribute instance-attribute

gvwr_kg: float = 0 class-attribute instance-attribute

insurance_rates_pct_per_yr: list = field(default_factory=list) class-attribute instance-attribute

knob_max_ess_kwh: list = field(default_factory=list) class-attribute instance-attribute

knob_max_fc_kw: list = field(default_factory=list) class-attribute instance-attribute

knob_max_fs_kwh: list = field(default_factory=list) class-attribute instance-attribute

knob_max_motor_kw: list = field(default_factory=list) class-attribute instance-attribute

knob_min_ess_kwh: list = field(default_factory=list) class-attribute instance-attribute

knob_min_fc_kw: list = field(default_factory=list) class-attribute instance-attribute

knob_min_fs_kwh: list = field(default_factory=list) class-attribute instance-attribute

knob_min_motor_kw: list = field(default_factory=list) class-attribute instance-attribute

labor_rate_dol_per_hr: float = 0 class-attribute instance-attribute

lw_imp_curve_sel: str = '' class-attribute instance-attribute

maint_oper_cost_dol_per_mi: list = field(default_factory=list) class-attribute instance-attribute

markup_pct: float = 0 class-attribute instance-attribute

max_time_0_to_30mph_at_gvwr_s: float = 0 class-attribute instance-attribute

max_time_0_to_60mph_at_gvwr_s: float = 0 class-attribute instance-attribute

max_time_dilation: float = -1 class-attribute instance-attribute

min_speed_at_1p25pct_grade_in_5min_mph: float = 0 class-attribute instance-attribute

min_speed_at_6pct_grade_in_5min_mph: float = 0 class-attribute instance-attribute

min_time_dilation: float = -1 class-attribute instance-attribute

missed_trace_correction: bool = False class-attribute instance-attribute

model_year: float = 0 class-attribute instance-attribute

motor_power_override_kw_fc_demand_on_pct: float = -1 class-attribute instance-attribute

mr_avg_tire_life_mi: float = 0 class-attribute instance-attribute

mr_planned_downtime_hr_per_yr: float = 0 class-attribute instance-attribute

mr_tire_replace_downtime_hr_per_event: float = 0 class-attribute instance-attribute

mr_unplanned_downtime_hr_per_mi: list = field(default_factory=list) class-attribute instance-attribute

objective_phev_minimize_fuel_use: bool = False class-attribute instance-attribute

objective_tco: bool = False class-attribute instance-attribute

origfc_eff_map: list = field(default_factory=list) class-attribute instance-attribute

originalGliderPrice: float = -1.0 class-attribute instance-attribute

originalIceDolPerKw: float = -1.0 class-attribute instance-attribute

originalcargo_kg: float = -1.0 class-attribute instance-attribute

originaldrag_coef: float = -1 class-attribute instance-attribute

originalglider_kg: float = -1.0 class-attribute instance-attribute

pe_mc_base_cost_dol: float = 0 class-attribute instance-attribute

pe_mc_cost_dol_per_kw: float = 0 class-attribute instance-attribute

phev_utility_factor_computed: float = -1 class-attribute instance-attribute

phev_utility_factor_override: float = -1 class-attribute instance-attribute

plf_ref_veh_empty_mass_kg: float = 0 class-attribute instance-attribute

plf_reference_vehicle_cargo_capacity_kg: float = 0 class-attribute instance-attribute

plf_scenario_vehicle_cargo_capacity_kg: float = 0 class-attribute instance-attribute

plf_scenario_vehicle_empty_kg: float = 0 class-attribute instance-attribute

plug_base_cost_dol: float = 0 class-attribute instance-attribute

region: str = '' class-attribute instance-attribute

residual_rate_pct: float = 0 class-attribute instance-attribute

segment_name: str = '' class-attribute instance-attribute

selection: float = 0 class-attribute instance-attribute

shifts_per_year: list = field(default_factory=list) class-attribute instance-attribute

skip_opt: bool = False class-attribute instance-attribute

soc_norm_init_for_accel_pct: float = -1 class-attribute instance-attribute

soc_norm_init_for_grade_pct: float = -1 class-attribute instance-attribute

target_range_mi: float = 0 class-attribute instance-attribute

tax_rate_pct: float = 0 class-attribute instance-attribute

time_dilation_tol: float = -1 class-attribute instance-attribute

trace_miss_dist_percent: float = 0 class-attribute instance-attribute

use_config: bool = True class-attribute instance-attribute

vehicle_class: str = '' class-attribute instance-attribute

vehicle_glider_cost_dol: float = 0 class-attribute instance-attribute

vehicle_life_yr: float = 0 class-attribute instance-attribute

vmt: list = field(default_factory=list) class-attribute instance-attribute

vmt_reduct_per_yr: float = 0 class-attribute instance-attribute

vocation: str = '' class-attribute instance-attribute

__init__(selection: float = 0, drive_cycle: str = '', use_config: bool = True, vmt_reduct_per_yr: float = 0, vmt: list = list(), constant_trip_distance_mi: float = 0, vehicle_life_yr: float = 0, desired_ess_replacements: float = 0, discount_rate_pct_per_yr: float = 0, ess_max_charging_power_kw: float = 0, ess_cost_dol_per_kw: float = 0, ess_cost_dol_per_kwh: float = 0, ess_base_cost_dol: float = 0, ess_cost_reduction_dol_per_yr: float = 0, ess_salvage_value_dol: float = 0, ess_charge_rate_kW: float = 0, pe_mc_cost_dol_per_kw: float = 0, pe_mc_base_cost_dol: float = 0, fc_ice_cost_dol_per_kw: float = 0, fc_ice_base_cost_dol: float = 0, fc_fuelcell_cost_dol_per_kw: float = 0, fs_cost_dol_per_kwh: float = 0, fs_h2_cost_dol_per_kwh: float = 0, plug_base_cost_dol: float = 0, markup_pct: float = 0, tax_rate_pct: float = 0, fc_cng_ice_cost_dol_per_kw: float = 0, fs_cng_cost_dol_per_kwh: float = 0, vehicle_glider_cost_dol: float = 0, segment_name: str = '', gvwr_kg: float = 0, gvwr_credit_kg: float = 0, fuel_type: list = list(), maint_oper_cost_dol_per_mi: list = list(), vocation: str = '', vehicle_class: str = '', model_year: float = 0, region: str = '', target_range_mi: float = 0, min_speed_at_6pct_grade_in_5min_mph: float = 0, min_speed_at_1p25pct_grade_in_5min_mph: float = 0, max_time_0_to_60mph_at_gvwr_s: float = 0, max_time_0_to_30mph_at_gvwr_s: float = 0, lw_imp_curve_sel: str = '', eng_eff_imp_curve_sel: str = '', aero_drag_imp_curve_sel: str = '', originalcargo_kg: float = -1.0, originalglider_kg: float = -1.0, originalGliderPrice: float = -1.0, originalIceDolPerKw: float = -1.0, origfc_eff_map: list = list(), originaldrag_coef: float = -1, ess_init_soc_grade: float = -1.0, ess_init_soc_accel: float = -1.0, soc_norm_init_for_accel_pct: float = -1, soc_norm_init_for_grade_pct: float = -1, fs_fueling_rate_gasoline_gpm: float = 0, fs_fueling_rate_diesel_gpm: float = 0, fs_fueling_rate_kg_per_min: float = 0, phev_utility_factor_override: float = -1, phev_utility_factor_computed: float = -1, motor_power_override_kw_fc_demand_on_pct: float = -1, shifts_per_year: list = list(), missed_trace_correction: bool = False, max_time_dilation: float = -1, min_time_dilation: float = -1, time_dilation_tol: float = -1, skip_opt: bool = False, knob_min_ess_kwh: list = list(), knob_max_ess_kwh: list = list(), knob_min_motor_kw: list = list(), knob_max_motor_kw: list = list(), knob_min_fc_kw: list = list(), knob_max_fc_kw: list = list(), knob_min_fs_kwh: list = list(), knob_max_fs_kwh: list = list(), objective_phev_minimize_fuel_use: bool = False, constraint_c_rate: bool = False, constraint_range: bool = False, constraint_accel: bool = False, constraint_grade: bool = False, objective_tco: bool = False, constraint_trace_miss_dist_percent_on: bool = False, trace_miss_dist_percent: float = 0, constraint_phev_minimize_fuel_use_on: bool = False, constraint_phev_minimize_fuel_use_percent: float = 0, labor_rate_dol_per_hr: float = 0, downtime_oppy_cost_dol_per_hr: float = 0, activate_tco_payload_cap_cost_multiplier: bool = True, plf_ref_veh_empty_mass_kg: float = 0, plf_scenario_vehicle_empty_kg: float = 0, plf_reference_vehicle_cargo_capacity_kg: float = 0, plf_scenario_vehicle_cargo_capacity_kg: float = 0, estimated_lost_payload_kg: float = 0, activate_tco_fueling_dwell_time_cost: bool = False, dlf_min_charge_time_hr: float = 0, fdt_dwpt_fraction_power_pct: float = 0, fdt_avg_overhead_hr_per_dwell_hr: float = 0, fdt_frac_full_charge_bounds: float = 0, fdt_num_free_dwell_trips: float = 0, fdt_available_freetime_hr: float = 0, insurance_rates_pct_per_yr: list = list(), residual_rate_pct: float = 0, activate_mr_downtime_cost: bool = False, mr_planned_downtime_hr_per_yr: float = 0, mr_unplanned_downtime_hr_per_mi: list = list(), mr_avg_tire_life_mi: float = 0, mr_tire_replace_downtime_hr_per_event: float = 0) -> None

from_config(config: Config = None, verbose: bool = False) -> None

This method overrides certain scenario fields if use_config is True and config object is not None

Parameters:

Name Type Description Default
config Config

Config object. Defaults to None.

None
Source code in t3co/run/run_scenario.py
Python
def from_config(self, config: Config = None, verbose: bool = False) -> None:
    """
    This method overrides certain scenario fields if use_config is True and config object is not None

    Args:
        config (Config, optional): Config object. Defaults to None.

    """
    fields_override = [
        "vehicle_life_yr",
        "fs_fueling_rate_kg_per_min",
        "fs_fueling_rate_gasoline_gpm",
        "fs_fueling_rate_diesel_gpm",
        "lw_imp_curve_sel",
        "eng_eff_imp_curve_sel",
        "aero_drag_imp_curve_sel",
        "constraint_range",
        "constraint_accel",
        "constraint_grade",
        "objective_tco",
        "constraint_c_rate",
        "constraint_trace_miss_dist_percent_on",
        "objective_phev_minimize_fuel_use",
        "activate_tco_payload_cap_cost_multiplier",
        "activate_tco_fueling_dwell_time_cost",
        "fdt_frac_full_charge_bounds",
        "activate_mr_downtime_cost",
    ]
    if config.dc_files == None:
        fields_override.append("drive_cycle")
    self.fields_overriden = []
    if self.use_config == True and config != None:
        for field_select in fields_override:
            if config.__dict__[field_select] != None:
                # and (
                # not self.__dict__[field_select])
                setattr(self, field_select, config.__getattribute__(field_select))
                # print(f'field: {field}, type: {type(self.__getattribute__(field))}, value: {self.__getattribute__(field)}')
                self.fields_overriden.append(field_select)
        print(
            f"Scenario Fields overridden from config: {self.fields_overriden}"
        ) if verbose else None
    else:
        print(
            f"Config file not attached or scenario.use_config set to False: {config}"
        )

check_phev_init_socs(a_vehicle: vehicle.Vehicle, scenario: Scenario) -> None

This function checks that soc_norm_init_for_grade_pct and soc_norm_init_for_accel_pct are present only for PHEVs

Parameters:

Name Type Description Default
a_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
scenario Scenario

T3CO scenario object

required
Source code in t3co/run/run_scenario.py
Python
def check_phev_init_socs(a_vehicle: vehicle.Vehicle, scenario: Scenario) -> None:
    """
    This function checks that soc_norm_init_for_grade_pct and soc_norm_init_for_accel_pct are present only for PHEVs

    Args:
        a_vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        scenario (Scenario): T3CO scenario object
    """
    # these override ess_init_soc_grade and ess_init_soc_accel
    # these should ONLY be used for PHEV, for now, until discussed for use for HEV, BEV
    # init_soc = min_soc + (soc_norm_init_for_accel_pct * (max_soc - min_soc))
    if (
        np.isnan(scenario.soc_norm_init_for_grade_pct) == False
        and scenario.soc_norm_init_for_grade_pct != -1
    ):
        assert (
            a_vehicle.veh_pt_type == gl.PHEV
        ), "soc_norm_init_for_grade_pct only available for PHEVs"
        assert (
            scenario.ess_init_soc_grade == -1
        ), f"INPUT ERROR, user specifed ess_init_soc_grade {scenario.ess_init_soc_grade}, & soc_norm_init_for_grade_pct {scenario.soc_norm_init_for_grade_pct} for PHEV; the question of which one to use is ambiguous"
    if (
        np.isnan(scenario.soc_norm_init_for_accel_pct) == False
        and scenario.soc_norm_init_for_accel_pct != -1
    ):
        assert (
            a_vehicle.veh_pt_type == gl.PHEV
        ), "soc_norm_init_for_accel_pct only available for PHEVs"
        assert (
            scenario.ess_init_soc_accel == -1
        ), f"INPUT ERROR, user specifed ess_init_soc_accel {scenario.ess_init_soc_accel}, & soc_norm_init_for_accel_pct {scenario.soc_norm_init_for_accel_pct} for PHEV; the question of which one to use is ambiguous"

create_fastsim_vehicle(veh_dict: dict = None) -> fastsim.vehicle.Vehicle

This function creates and returns an empty FASTSim vehicle object with no attributes or

Parameters:

Name Type Description Default
veh_dict dict

Vehicle attributes dict. Defaults to None.

None

Returns:

Name Type Description
v fastsim.vehicle.Vehicle

FASTSim vehicle object

Source code in t3co/run/run_scenario.py
Python
def create_fastsim_vehicle(veh_dict: dict = None) -> fastsim.vehicle.Vehicle:
    """
    This function creates and returns an empty FASTSim vehicle object with no attributes or

    Args:
        veh_dict (dict, optional): Vehicle attributes dict. Defaults to None.

    Returns:
        v (fastsim.vehicle.Vehicle): FASTSim vehicle object
    """

    if not veh_dict:
        veh_dict = {"DELETEME": 0}
    v = vehicle.Vehicle(veh_dict=veh_dict)
    try:
        if not veh_dict:
            del v.DELETEME
    except AttributeError:
        pass
    return v

get_objective_simdrive(analysis_vehicle: vehicle.Vehicle, cycle: fastsim.cycle.Cycle) -> fastsim.simdrive.SimDrive

This function obtains the SimDrive for accel and grade test

Parameters:

Name Type Description Default
analysis_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
cycle fastsim.cycle.Cycle

FASTSim Cycle object

required

Returns:

Name Type Description
sd fastsim.simdrive.SimDrive

FASTSim SimDrive object containing vehicle inputs and simulation output attributes

Source code in t3co/run/run_scenario.py
Python
def get_objective_simdrive(
    analysis_vehicle: vehicle.Vehicle, cycle: fastsim.cycle.Cycle
) -> fastsim.simdrive.SimDrive:
    """
    This function obtains the SimDrive for accel and grade test

    Args:
        analysis_vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        cycle (fastsim.cycle.Cycle): FASTSim Cycle object

    Returns:
        sd (fastsim.simdrive.SimDrive): FASTSim SimDrive object containing vehicle inputs and simulation output attributes
    """
    sd = simdrive.SimDrive(cycle, analysis_vehicle)
    sd = sd.to_rust()
    sim_params = sd.sim_params
    sim_params.reset_orphaned()
    sim_params.missed_trace_correction = False
    # accel and grade traces are not achievable for our vehicles in the way we've constructed the tests, so suppress this warning with large tolerance
    sim_params.trace_miss_speed_mps_tol = np.inf
    sim_params.energy_audit_error_tol = np.inf
    sim_params.trace_miss_dist_tol = np.inf
    sd.sim_params = sim_params

    return sd

get_phev_util_factor(scenario: Scenario, v: fastsim.vehicle.Vehicle, mpgge: dict) -> float

This function gets the PHEV utility factor derived from the computed range of the vehicle and the operational day range computed from shifts per year and the first vmt year

Parameters:

Name Type Description Default
scenario Scenario

T3CO scenario object

required
v fastsim.vehicle.Vehicle

FASTSim vehicle object

required
mpgge dict

Miles per Gallon Gasoline Equivalent dictionary

required

Returns:

Name Type Description
uf float

PHEV computed utility factor

Source code in t3co/run/run_scenario.py
Python
def get_phev_util_factor(
    scenario: Scenario, v: fastsim.vehicle.Vehicle, mpgge: dict
) -> float:
    """
    This function gets the PHEV utility factor derived from the computed range of the
    vehicle and the operational day range computed from shifts per year and the first vmt year

    Args:
        scenario (Scenario): T3CO scenario object
        v (fastsim.vehicle.Vehicle): FASTSim vehicle object
        mpgge (dict): Miles per Gallon Gasoline Equivalent dictionary

    Returns:
        uf (float): PHEV computed utility factor
    """
    scenario.shifts_per_year = ast.literal_eval(scenario.shifts_per_year)

    uf = scenario.phev_utility_factor_override
    assert type(scenario.phev_utility_factor_override) in [
        int,
        float,
    ], "should be -1 or some float"
    cd_range_mi = fueleconomy.get_range_mi(mpgge, v, scenario)["cd_aer_phev_range_mi"]

    if uf == -1:
        shift_range_mi = scenario.vmt[0] / scenario.shifts_per_year[0]
        scenario.phev_utility_factor_computed = round(
            min(shift_range_mi, cd_range_mi) / shift_range_mi, 3
        )
        uf = scenario.phev_utility_factor_computed
    return uf

get_scenario_and_cycle(veh_no: int, scenario_inputs_path: str, a_vehicle: fastsim.vehicle.Vehicle = None, config: Config = None, do_input_validation: bool = False) -> Tuple[Scenario, fastsim.cycle.Cycle]

This function uses helper methods load_scenario and load_design_cycle_from_scenario to get scenario object and cycle object corresponding to selected vehicle (by veh_no)

Parameters:

Name Type Description Default
veh_no int

vehicle selection number

required
scenario_inputs_path str

input file path for scenario assumptions CSV

required
a_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object for given selection. Defaults to None.

None
config Config

Config object for current analysis. Defaults to None.

None

Returns:

Name Type Description
scenario Scenario

T3CO scenario object selected

cyc fastsim.cycle.Cycle

FASTSim cycle object selected

Source code in t3co/run/run_scenario.py
Python
def get_scenario_and_cycle(
    veh_no: int,
    scenario_inputs_path: str,
    a_vehicle: fastsim.vehicle.Vehicle = None,
    config: Config = None,
    do_input_validation: bool = False,
) -> Tuple[Scenario, fastsim.cycle.Cycle]:
    """
    This function uses helper methods load_scenario and load_design_cycle_from_scenario \
        to get scenario object and cycle object corresponding to selected vehicle (by veh_no)

    Args:
        veh_no (int): vehicle selection number
        scenario_inputs_path (str): input file path for scenario assumptions CSV
        a_vehicle (fastsim.vehicle.Vehicle, optional): FASTSim vehicle object for given selection. Defaults to None.
        config (Config, optional): Config object for current analysis. Defaults to None.

    Returns:
        scenario (Scenario): T3CO scenario object selected
        cyc (fastsim.cycle.Cycle): FASTSim cycle object selected
    """
    scenario = load_scenario(veh_no, scenario_inputs_path, a_vehicle, config)
    cyc = load_design_cycle_from_scenario(
        scenario,
        config,
        gl.OPTIMIZATION_DRIVE_CYCLES,
        do_input_validation=do_input_validation,
    )

    if isinstance(cyc, list):
        scenario.constant_trip_distance_mi = sum(
            [
                sum(cyc[i][0].mph * np.diff(np.array(cyc[i][0].time_s), append=0))
                * cyc[i][1]
                / 3600
                for i in range(len(cyc))
            ]
        )
    else:
        scenario.constant_trip_distance_mi = (
            sum(cyc.mph * np.diff(np.array(cyc.time_s), append=0)) / 3600
        )

    return scenario, cyc

get_vehicle(veh_no: int, veh_input_path: str) -> fastsim.vehicle.Vehicle

This function loads vehicle object from vehicle number and input csv filepath

Parameters:

Name Type Description Default
veh_no int

vehicle selection number

required
veh_input_path str

vehicle model assumptions input CSV file path

required

Returns:

Name Type Description
veh fastsim.vehicle.Vehicle

FASTSim vehicle object

Source code in t3co/run/run_scenario.py
Python
def get_vehicle(veh_no: int, veh_input_path: str) -> fastsim.vehicle.Vehicle:
    """
    This function loads vehicle object from vehicle number and input csv filepath

    Args:
        veh_no (int): vehicle selection number
        veh_input_path (str): vehicle model assumptions input CSV file path

    Returns:
        veh (fastsim.vehicle.Vehicle): FASTSim vehicle object
    """

    scenario_sel = int(float(str(veh_no).split("_")[0]))
    veh = vehicle.Vehicle.from_vehdb(scenario_sel, veh_input_path, to_rust=True)
    veh.set_derived()
    veh.set_veh_mass()

    return veh

limit_cargo_kg_for_moo_hev_bev(opt_scenario: Scenario, mooadvancedvehicle: fastsim.vehicle.Vehicle) -> None

This helper method is used within T3COProblem to assign limited cargo capacity based on GVWR + GVWRCredit and optimization vehicle mass for advanced vehicles

Parameters:

Name Type Description Default
opt_scenario t3co.run_scenario.Scenario

T3CO scenario object

required
mooadvancedvehicle fastsim.vehicle.Vehicle

pymoo optimization vehicle

required
Source code in t3co/run/run_scenario.py
Python
def limit_cargo_kg_for_moo_hev_bev(
    opt_scenario: Scenario, mooadvancedvehicle: fastsim.vehicle.Vehicle
) -> None:
    """
    This helper method is used within T3COProblem to assign limited cargo capacity based on GVWR + GVWRCredit and optimization vehicle mass for advanced vehicles

    Args:
        opt_scenario (t3co.run_scenario.Scenario): T3CO scenario object
        mooadvancedvehicle (fastsim.vehicle.Vehicle): pymoo optimization vehicle
    """
    # limit cargo to a value <= its original mass, decrease it if vehicle is overweight
    max_allowable_weight_kg = opt_scenario.gvwr_kg + opt_scenario.gvwr_credit_kg
    cargo_limited = max_allowable_weight_kg - (
        mooadvancedvehicle.veh_kg - mooadvancedvehicle.cargo_kg
    )
    cargo_limited = max(cargo_limited, 0)
    # TODO socialize the fact that this next line makes it impossible to add cargo capacity relative to baseline
    # lightweighting and such can improve energy efficiency but not increase cargo
    mooadvancedvehicle.cargo_kg = min(cargo_limited, opt_scenario.originalcargo_kg)
    mooadvancedvehicle.set_veh_mass()

load_design_cycle_from_path(cyc_file_path: str) -> fastsim.cycle.Cycle

This helper method loads the Cycle object from the drivecycle filepath

Parameters:

Name Type Description Default
cyc_file_path str

drivecycle input file path

required

Returns:

Name Type Description
range_cyc fastsim.cycle.Cycle

FASTSim cycle object for current Scenario object

Source code in t3co/run/run_scenario.py
Python
def load_design_cycle_from_path(cyc_file_path: str) -> fastsim.cycle.Cycle:
    """
    This helper method loads the Cycle object from the drivecycle filepath

    Args:
        cyc_file_path (str): drivecycle input file path

    Returns:
        range_cyc (fastsim.cycle.Cycle): FASTSim cycle object for current Scenario object
    """
    if Path(cyc_file_path).exists() == False:
        print(
            f"Drive cycle not found in {cyc_file_path}, trying {gl.OPTIMIZATION_DRIVE_CYCLES}"
        )
        finalized_path = Path(gl.OPTIMIZATION_DRIVE_CYCLES) / cyc_file_path

    else:
        finalized_path = cyc_file_path
    range_cyc = cycle.Cycle.from_file(finalized_path)
    range_cyc = range_cyc.to_rust()
    return range_cyc

load_design_cycle_from_scenario(scenario: Scenario, config: Config = None, cyc_file_path: str = gl.OPTIMIZATION_DRIVE_CYCLES, do_input_validation: bool = False) -> fastsim.cycle.Cycle

This helper method loads the design cycle used for mpgge and range determination. It can also be used standalone to get cycles not in standard gl.OPTIMIZATION_DRIVE_CYCLES location, but still needs cycle name from scenario object, carried in scenario.drive_cycle. If the drive cycles are a list of tuples, handle accordingly with eval.

Parameters:

Name Type Description Default
scenario Scenario

Scenario object for current selection

required
cyc_file_path str

drivecycle input file path. Defaults to gl.OPTIMIZATION_DRIVE_CYCLES.

gl.OPTIMIZATION_DRIVE_CYCLES

Returns:

Name Type Description
range_cyc fastsim.cycle.Cycle

FASTSim cycle object for current Scenario object

Source code in t3co/run/run_scenario.py
Python
def load_design_cycle_from_scenario(
    scenario: Scenario,
    config: Config = None,
    cyc_file_path: str = gl.OPTIMIZATION_DRIVE_CYCLES,
    do_input_validation: bool = False,
) -> fastsim.cycle.Cycle:
    """
    This helper method loads the design cycle used for mpgge and range determination.
    It can also be used standalone to get cycles not in standard gl.OPTIMIZATION_DRIVE_CYCLES location,
    but still needs cycle name from scenario object, carried in scenario.drive_cycle.
    If the drive cycles are a list of tuples, handle accordingly with eval.

    Args:
        scenario (Scenario): Scenario object for current selection
        cyc_file_path (str, optional): drivecycle input file path. Defaults to gl.OPTIMIZATION_DRIVE_CYCLES.

    Returns:
        range_cyc (fastsim.cycle.Cycle): FASTSim cycle object for current Scenario object
    """

    if config.dc_files != None and not do_input_validation:
        dc_id = int(float(str(scenario.selection).split("_")[1]))
        sdc = str(config.dc_files[dc_id])
    else:
        sdc = str(scenario.drive_cycle)
    print(f"Drivecycle: {sdc}")
    if "[" in sdc and "]" in sdc and "(" in sdc and ")" in sdc:
        scenario.drive_cycle = ast.literal_eval(sdc)
        range_cyc = []
        for dc_weight in scenario.drive_cycle:
            cycle_file_name = Path(dc_weight[0]).name
            dc = load_design_cycle_from_path(
                cyc_file_path=Path(cyc_file_path) / dc_weight[0]
            )
            dc.name = cycle_file_name
            weight = dc_weight[1]
            range_cyc.append((dc, weight))
    else:
        cycle_file_name = Path(sdc).name
        range_cyc = load_design_cycle_from_path(cyc_file_path=sdc)
        range_cyc.name = cycle_file_name

    return range_cyc

load_scenario(veh_no: int, scenario_inputs_path: str, a_vehicle: fastsim.vehicle.Vehicle = None, config: Config = None) -> Scenario

This function gets the Scenario object from scenario input CSV filepath, initializes some fields, and overrides some fields based on Config object

Parameters:

Name Type Description Default
veh_no int

vehicle selection number

required
scenario_inputs_path str

input file path for scenario assumptions CSV

required
a_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object for given selection. Defaults to None.

None
config Config

Config object for current analysis. Defaults to None.

None

Returns:

Name Type Description
scenario Scenario

Scenario object for given selection

Source code in t3co/run/run_scenario.py
Python
def load_scenario(
    veh_no: int,
    scenario_inputs_path: str,
    a_vehicle: fastsim.vehicle.Vehicle = None,
    config: Config = None,
) -> Scenario:
    """
    This function gets the Scenario object from scenario input CSV filepath, initializes some fields,\
          and overrides some fields based on Config object

    Args:
        veh_no (int): vehicle selection number
        scenario_inputs_path (str): input file path for scenario assumptions CSV
        a_vehicle (fastsim.vehicle.Vehicle, optional): FASTSim vehicle object for given selection. Defaults to None.
        config (Config, optional): Config object for current analysis. Defaults to None.

    Returns:
        scenario (Scenario): Scenario object for given selection
    """
    scenarios = pd.read_csv(scenario_inputs_path)
    veh_no_split = str(veh_no).split("_")[0]
    assert (
        len(scenarios[scenarios["selection"] == int(float(str(veh_no).split("_")[0]))])
        == 1
    ), f"conflict in {__file__}get_scenario(_): Scenario numbers in {scenario_inputs_path} are not unique "
    scenario_dict = scenarios[
        scenarios["selection"] == int(float(str(veh_no).split("_")[0]))
    ].to_dict("list")
    scenario_dict = {k: v[0] for k, v in scenario_dict.items()}
    scenario_dict["vehicle_class"] = " "
    scenario_dict["vehicle_class"] = (
        scenario_dict["vehicle_class"]
        .join(scenario_dict["scenario_name"].split()[:3])
        .lower()
    )

    if "scenario_name" in scenario_dict:
        del scenario_dict["scenario_name"]

    if len(str(veh_no).split("_")) > 1 and config.dc_files:
        dc_id = int(str(veh_no).split("_")[1])
        scenario_dict["drive_cycle"] = config.dc_files[dc_id]
        scenario_dict["selection"] = veh_no
        # print('load_scenario Path error')

    # handle PHEV fuels list and UF list, convert to lists
    fuels = scenario_dict["fuel_type"]
    if "[" in fuels and "]" in fuels:
        fuels = ast.literal_eval(
            fuels
        )  # PHEV ["CD electricity", "CD diesel", "CS diesel"]
    else:
        fuels = [fuels]
    scenario_dict["fuel_type"] = fuels

    # handle VMT, turn into list
    scenario_dict["vmt"] = ast.literal_eval(scenario_dict["vmt"])
    scenario_dict["mr_unplanned_downtime_hr_per_mi"] = ast.literal_eval(
        scenario_dict["mr_unplanned_downtime_hr_per_mi"]
    )
    # if config: scenario_dict['config'] = config
    scenario = Scenario(**scenario_dict)
    scenario.from_config(config, verbose=False)

    # convert insurance rates string into float list
    scenario.insurance_rates_pct_per_yr = list(
        np.float_(scenario.insurance_rates_pct_per_yr.strip(" ][").split(","))
    )

    # validate some inputs, assign as -1 if not provided by user in input file
    if np.isnan(scenario.ess_init_soc_grade):
        scenario.ess_init_soc_grade = -1
    if np.isnan(scenario.ess_init_soc_accel):
        scenario.ess_init_soc_accel = -1
    if np.isnan(scenario.soc_norm_init_for_accel_pct):
        scenario.soc_norm_init_for_accel_pct = -1
    if np.isnan(scenario.soc_norm_init_for_grade_pct):
        scenario.soc_norm_init_for_grade_pct = -1

    # PHEV settings and checks
    if (
        np.isnan(scenario.phev_utility_factor_override)
        or scenario.phev_utility_factor_override is None
    ):
        scenario.phev_utility_factor_override = -1
        # we need non-None VMT and shifts_per_year since there is no phev_utility_factor_override provided
        assert (
            scenario.shifts_per_year not in [False, None, np.nan]
        ), f"invalid shifts_per_year value {scenario.shifts_per_year}, need a valid shifts_per_year (positive integer) value to compute utility factor since there is no phev_utility_factor_override provided"
        assert (
            scenario.vmt[0] is not None
        ), "we need non-None VMT since there is no phev_utility_factor_override provided"
    if (
        np.isnan(scenario.motor_power_override_kw_fc_demand_on_pct)
        or scenario.motor_power_override_kw_fc_demand_on_pct is None
    ):
        scenario.motor_power_override_kw_fc_demand_on_pct = -1
    elif scenario.motor_power_override_kw_fc_demand_on_pct != -1:
        assert (
            scenario.motor_power_override_kw_fc_demand_on_pct < 1
            and scenario.motor_power_override_kw_fc_demand_on_pct > 0
        ), f"motor_power_override_kw_fc_demand_on_pct {scenario.motor_power_override_kw_fc_demand_on_pct}"
    if a_vehicle is not None and a_vehicle.veh_pt_type == gl.PHEV:
        if scenario.motor_power_override_kw_fc_demand_on_pct != 1:
            assert (
                a_vehicle.kw_demand_fc_on != None
                and np.isnan(a_vehicle.kw_demand_fc_on) != True
            )
    assert (
        scenario.phev_utility_factor_computed == -1
    ), "this should never be populated in input files, only computed if user does not populate phev_utility_factor_override"

    return scenario

rerun(vehicle: fastsim.vehicle.Vehicle, vocation: str, scenario: Scenario, config: Config)

This function runs vehicle_scenario_sweep when given the vehicle and scenario objects

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
vocation str

vocation description

required
scenario Scenario

Scenario object

required

Returns:

Name Type Description
out dict

output dictionary containing TCO outputs

Source code in t3co/run/run_scenario.py
Python
def rerun(
    vehicle: fastsim.vehicle.Vehicle, vocation: str, scenario: Scenario, config: Config
):
    """
    This function runs vehicle_scenario_sweep when given the vehicle and scenario objects

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        vocation (str): vocation description
        scenario (Scenario): Scenario object

    Returns:
        out (dict): output dictionary containing TCO outputs
    """
    # set up tco results directories for the vocation-scenario
    gl.vocation_scenario = vocation
    gl.set_tco_intermediates()
    gl.set_tco_results()

    range_cyc = load_design_cycle_from_scenario(scenario, config)

    out = vehicle_scenario_sweep(vehicle, scenario, range_cyc)

    return out

reset_vehicle_weight(vehicle: fastsim.vehicle.Vehicle) -> None

This function resets vehicle mass after loaded weight tests are done for accel and grade

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
Source code in t3co/run/run_scenario.py
Python
def reset_vehicle_weight(vehicle: fastsim.vehicle.Vehicle) -> None:
    """
    This function resets vehicle mass after loaded weight tests are done for accel and grade

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
    """
    vehicle.veh_override_kg = 0
    vehicle.set_veh_mass()

run(veh_no: int, vocation: str = 'blank', vehicle_input_path: str = gl.FASTSIM_INPUTS, scenario_inputs_path: str = gl.OTHER_INPUTS)

This function runs vehicle_scenario_sweep based on vehicle and scenario objects read from input file paths

Parameters:

Name Type Description Default
veh_no int

vehicle selection number

required
vocation str

vocation description of selected vehicle. Defaults to "blank".

'blank'
vehicle_input_path str

input file path for vehicle assumptions CSV. Defaults to gl.FASTSIM_INPUTS.

gl.FASTSIM_INPUTS
scenario_inputs_path str

input file path for scenario assumptions CSV. Defaults to gl.OTHER_INPUTS.

gl.OTHER_INPUTS

Returns:

Name Type Description
out dict

output dictionary containing TCO results

Source code in t3co/run/run_scenario.py
Python
def run(
    veh_no: int,
    vocation: str = "blank",
    vehicle_input_path: str = gl.FASTSIM_INPUTS,
    scenario_inputs_path: str = gl.OTHER_INPUTS,
):
    """
    This function runs vehicle_scenario_sweep based on vehicle and scenario objects read from input file paths

    Args:
        veh_no (int): vehicle selection number
        vocation (str, optional): vocation description of selected vehicle. Defaults to "blank".
        vehicle_input_path (str, optional): input file path for vehicle assumptions CSV. Defaults to gl.FASTSIM_INPUTS.
        scenario_inputs_path (str, optional): input file path for scenario assumptions CSV. Defaults to gl.OTHER_INPUTS.

    Returns:
        out (dict): output dictionary containing TCO results
    """

    # set up tco results directories for the vocation-scenario
    gl.vocation_scenario = vocation
    gl.set_tco_intermediates()
    gl.set_tco_results()

    # load the generated file of vehicles, drive cycles, and tech targets
    vehicle = get_vehicle(veh_no, vehicle_input_path)
    scenario, range_cyc = get_scenario_and_cycle(veh_no, scenario_inputs_path)

    out = vehicle_scenario_sweep(vehicle, scenario, range_cyc)

    return out

run_grade_or_accel(test: str, analysis_vehicle: fastsim.vehicle.Vehicle, sim_drive: fastsim.simdrive.SimDrive, ess_init_soc: float) -> None

This function handles initial SOC considerations for grade and accel tests

If ess_init_soc override is passed, use that Else if the vehicle is an HEV, use the standard HEV init SOC values for accel and grade Else, let FASTSim determine init SOC in sim_drive() BEVs use max_soc PHEVs use max_soc Conv init_soc doesn't matter HEVs attempt SOC balancing but that is overrident by HEV test init SOC

Parameters:

Name Type Description Default
test str

'accel' or 'grade' test

required
analysis_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
sim_drive fastsim.simdrive.SimDrive

FASTSim SimDrive object

required
ess_init_soc float

ESS initial state of charge (SOC)

required

Raises:

Type Description
Exception

if test not in ['accel', 'grade']

Source code in t3co/run/run_scenario.py
Python
def run_grade_or_accel(
    test: str,
    analysis_vehicle: fastsim.vehicle.Vehicle,
    sim_drive: fastsim.simdrive.SimDrive,
    ess_init_soc: float,
) -> None:
    """
    This function handles initial SOC considerations for grade and accel tests

    If ess_init_soc override is passed, use that
    Else if the vehicle is an HEV, use the standard HEV init SOC values for accel and grade
    Else, let FASTSim determine init SOC in sim_drive()
        BEVs use max_soc
        PHEVs use max_soc
        Conv init_soc doesn't matter
        HEVs attempt SOC balancing but that is overrident by HEV test init SOC

    Args:
        test (str): 'accel' or 'grade' test
        analysis_vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        sim_drive (fastsim.simdrive.SimDrive): FASTSim SimDrive object
        ess_init_soc (float): ESS initial state of charge (SOC)

    Raises:
        Exception: if test not in ['accel', 'grade']
    """

    if test == "accel":
        # this is what SimAccelTest object was doing in previous version (non-Rust JIT)
        hev_init_soc = (analysis_vehicle.max_soc + analysis_vehicle.min_soc) / 2.0
    elif test == "grade":
        hev_init_soc = analysis_vehicle.min_soc
    else:
        raise Exception("this should not have happened")

    if ess_init_soc is not None:
        sim_drive.sim_drive_walk(ess_init_soc)
    elif analysis_vehicle.veh_pt_type == gl.HEV:
        sim_drive.sim_drive_walk(hev_init_soc)
    else:
        sim_drive.sim_drive()

set_cargo_kg(analysis_vehicle: fastsim.vehicle.Vehicle, cargo_kg)

This helper method is used within T3COProblem to set cargo_kg to optimization vehicle

Parameters:

Name Type Description Default
analysis_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
cargo_kg float

vehicle cargo capacity /kg

required
Source code in t3co/run/run_scenario.py
Python
def set_cargo_kg(analysis_vehicle: fastsim.vehicle.Vehicle, cargo_kg):
    """
    This helper method is used within T3COProblem to set cargo_kg to optimization vehicle

    Args:
        analysis_vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        cargo_kg (float): vehicle cargo capacity /kg
    """
    analysis_vehicle.cargo_kg = cargo_kg
    analysis_vehicle.set_veh_mass()

set_fuel_store_kwh(analysis_vehicle: fastsim.vehicle.Vehicle, fs_kwh: float) -> None

This helper method is used within T3COProblem to set fs_kwh to optimization vehicle

Parameters:

Name Type Description Default
analysis_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
fs_kwh float

fuel storage energy capacity /kWh

required
Source code in t3co/run/run_scenario.py
Python
def set_fuel_store_kwh(
    analysis_vehicle: fastsim.vehicle.Vehicle, fs_kwh: float
) -> None:
    """
    This helper method is used within T3COProblem to set fs_kwh to optimization vehicle

    Args:
        analysis_vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        fs_kwh (float): fuel storage energy capacity /kWh
    """
    analysis_vehicle.fs_kwh = fs_kwh
    analysis_vehicle.set_derived()

set_max_battery_kwh(analysis_vehicle: fastsim.vehicle.Vehicle, max_ess_kwh: float) -> None

This helper method is used within T3COProblem to set max_ess_kwh to optimization vehicle

Parameters:

Name Type Description Default
analysis_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
max_ess_kwh float

max energy storage system energy capacity /kWh

required
Source code in t3co/run/run_scenario.py
Python
def set_max_battery_kwh(
    analysis_vehicle: fastsim.vehicle.Vehicle, max_ess_kwh: float
) -> None:
    """
    This helper method is used within T3COProblem to set max_ess_kwh to optimization vehicle

    Args:
        analysis_vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        max_ess_kwh (float): max energy storage system energy capacity /kWh
    """
    analysis_vehicle.ess_max_kwh = max_ess_kwh
    analysis_vehicle.set_derived()

set_max_battery_power_kw(analysis_vehicle: fastsim.vehicle.Vehicle, max_ess_kw: float) -> None

This helper method is used within T3COProblem to set max_ess_kwx to optimization vehicle

Parameters:

Name Type Description Default
analysis_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
max_ess_kw float

max energy storage system power /kW

required
Source code in t3co/run/run_scenario.py
Python
def set_max_battery_power_kw(
    analysis_vehicle: fastsim.vehicle.Vehicle, max_ess_kw: float
) -> None:
    """
    This helper method is used within T3COProblem to set max_ess_kwx to optimization vehicle

    Args:
        analysis_vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        max_ess_kw (float): max energy storage system power /kW
    """
    analysis_vehicle.ess_max_kw = max_ess_kw
    analysis_vehicle.set_derived()

set_max_fuel_converter_kw(analysis_vehicle: fastsim.vehicle.Vehicle, fc_max_out_kw: float) -> None

This helper method is used within T3COProblem to set fc_max_out_kw to optimization vehicle

Parameters:

Name Type Description Default
analysis_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
fc_max_out_kw float

max fuel converter power /kW

required
Source code in t3co/run/run_scenario.py
Python
def set_max_fuel_converter_kw(
    analysis_vehicle: fastsim.vehicle.Vehicle, fc_max_out_kw: float
) -> None:
    """
    This helper method is used within T3COProblem to set fc_max_out_kw to optimization vehicle

    Args:
        analysis_vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        fc_max_out_kw (float): max fuel converter power /kW
    """
    analysis_vehicle.fc_max_kw = fc_max_out_kw
    analysis_vehicle.set_derived()

set_max_motor_kw(analysis_vehicle: fastsim.vehicle.Vehicle, scenario: Scenario, max_motor_kw: float) -> None

This helper method is used within T3COProblem to set max_motor_kw to optimization vehicle and set kw_demand_fc_on if PHEV

Parameters:

Name Type Description Default
analysis_vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
scenario run_scenario.Scenario

T3CO Scenarion object

required
max_motor_kw float

max motor power /kW

required
Source code in t3co/run/run_scenario.py
Python
def set_max_motor_kw(
    analysis_vehicle: fastsim.vehicle.Vehicle, scenario: Scenario, max_motor_kw: float
) -> None:
    """
    This helper method is used within T3COProblem to set max_motor_kw to optimization vehicle and set kw_demand_fc_on if PHEV

    Args:
        analysis_vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        scenario (run_scenario.Scenario): T3CO Scenarion object
        max_motor_kw (float): max motor power /kW
    """
    # old comments that may be needed again:
    # Scaling motor and ESS power with ESS capacity results in more reasonable
    # zero-to-sixty response to battery capacity and is generally consistent
    # with how things are done.  We need to firm up the functional form of this,
    # which came from Aaron Brooker for light duty.
    # veh.mc_max_kw = 24.46 * (veh.ess_max_kwh ** (-.475) * veh.ess_max_kwh)
    analysis_vehicle.mc_max_kw = max_motor_kw
    # TODO: for HEV (at least), battery power could be significantly lower than motor power,
    # and the following variable assignment will be pretty far off

    analysis_vehicle.ess_max_kw = (
        analysis_vehicle.mc_max_kw / analysis_vehicle.get_mcPeakEff()
    )

    # PHEV adjustment
    if analysis_vehicle.veh_pt_type == gl.PHEV:
        if scenario.motor_power_override_kw_fc_demand_on_pct != -1:
            analysis_vehicle.kw_demand_fc_on = (
                max_motor_kw * scenario.motor_power_override_kw_fc_demand_on_pct
            )

    analysis_vehicle.set_derived()

set_test_weight(vehicle: fastsim.vehicle.Vehicle, scenario: Scenario) -> None

assign standardized vehicle mass for accel and grade test using GVWR and GVWR Credit

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object

required
scenario t3co.run_scenario.Scenario

T3CO scenario object

required
Source code in t3co/run/run_scenario.py
Python
def set_test_weight(vehicle: fastsim.vehicle.Vehicle, scenario: Scenario) -> None:
    """
    assign standardized vehicle mass for accel and grade test using GVWR and GVWR Credit

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object
        scenario (t3co.run_scenario.Scenario): T3CO scenario object
    """
    # June 15,16 confirming that the test weight of vehicle should be GVWRKg + gvwr_credit_kg
    vehicle.veh_override_kg = scenario.gvwr_kg + scenario.gvwr_credit_kg
    vehicle.set_veh_mass()
    assert (
        vehicle.veh_kg > 0
    ), "vehicle weight [kg] cannot be zero, check Scenario values for gvwr_kg and gvwr_credit_kg"

vehicle_scenario_sweep(vehicle: fastsim.vehicle.Vehicle, scenario: Scenario, range_cyc, verbose=False, **kwargs)

This function contains helper methods such as get_tco_of_vehicle, check_phev_init_socs, get_accel, and get_gradeability and returns a dictionary of all TCO related outputs

Parameters:

Name Type Description Default
vehicle fastsim.vehicle.Vehicle

FASTSim vehicle object for current selection

required
scenario Scenario

Scenario object for current selection

required
range_cyc fastsim.cycle.Cycle

FASTSim cycle object for current scenario

required
verbose bool

if selected, prints out the TCO calculation process. Defaults to False.

False

Returns:

Name Type Description
out dict

output dictionary containing TCO elements

Source code in t3co/run/run_scenario.py
Python
def vehicle_scenario_sweep(
    vehicle: fastsim.vehicle.Vehicle,
    scenario: Scenario,
    range_cyc,
    verbose=False,
    **kwargs,
):
    """
    This function contains helper methods such as get_tco_of_vehicle, check_phev_init_socs, get_accel, and get_gradeability\
    and returns a dictionary of all TCO related outputs

    Args:
        vehicle (fastsim.vehicle.Vehicle): FASTSim vehicle object for current selection
        scenario (Scenario): Scenario object for current selection
        range_cyc (fastsim.cycle.Cycle): FASTSim cycle object for current scenario
        verbose (bool, optional): if selected, prints out the TCO calculation process. Defaults to False.

    Returns:
        out (dict): output dictionary containing TCO elements
    """
    get_accel = kwargs.get("get_accel", True)
    get_accel_loaded = kwargs.get("get_accel_loaded", True)
    get_gradability = kwargs.get("get_gradability", True)
    write_tsv = kwargs.get("write_tsv", False)

    # run the vehicle through TCO calculations
    if verbose:
        print("Running `tco_analysis.get_tco_of_vehicle`")
    (
        tot_cost_dol,
        discounted_tco_dol,
        oppy_cost_set,
        ownership_costs_df,
        discounted_costs_df,
        mpgge,
        veh_cost_set,
        design_cycle_sdr,
        veh_oper_cost_set,
        veh_opp_cost_set,
        tco_files,
    ) = tco_analysis.get_tco_of_vehicle(
        vehicle, range_cyc, scenario, write_tsv=write_tsv
    )

    # tco_analysis.get_operating_costs(scenario, ownership_costs_df, veh_opp_cost_set)

    vehicle_mass = {
        "glider_kg": vehicle.glider_kg,
        "cargo_kg": vehicle.cargo_kg,
        "transKg": vehicle.trans_kg * vehicle.comp_mass_multiplier,
        "ess_mass_kg": vehicle.ess_mass_kg,
        "mc_mass_kg": vehicle.mc_mass_kg,
        "fc_mass_kg": vehicle.fc_mass_kg,
        "fs_mass_kg": vehicle.fs_mass_kg,
        "veh_kg": vehicle.veh_kg,
        "gliderLb": gl.kg_to_lbs(vehicle.glider_kg),
        "cargoLb": gl.kg_to_lbs(vehicle.cargo_kg),
        "transLb": gl.kg_to_lbs(vehicle.trans_kg * vehicle.comp_mass_multiplier),
        "essMasLb": gl.kg_to_lbs(vehicle.ess_mass_kg),
        "mcMassLb": gl.kg_to_lbs(vehicle.mc_mass_kg),
        "fcMassLb": gl.kg_to_lbs(vehicle.fc_mass_kg),
        "fsMassLb": gl.kg_to_lbs(vehicle.fs_mass_kg),
        "vehLb": gl.kg_to_lbs(vehicle.veh_kg),
    }
    grade_sdr_6 = None
    grade_sdr_125 = None
    accel_sdr = None
    accel_loaded_sdr = None
    zero_to_60 = None
    zero_to_30 = None
    zero_to_60_loaded = None
    zero_to_30_loaded = None
    grade_6_mph_ach = None
    grade_1_25_mph_ach = None
    ess_init_soc_accel = None
    ess_init_soc_grade = None

    # init SOC overrides for grade and accel, for any vehicle that is not a PHEV
    if scenario.ess_init_soc_grade != -1:
        ess_init_soc_grade = scenario.ess_init_soc_grade
    if scenario.ess_init_soc_accel != -1:
        ess_init_soc_accel = scenario.ess_init_soc_accel

    check_phev_init_socs(vehicle, scenario)

    if scenario.soc_norm_init_for_grade_pct != -1:
        ess_init_soc_grade = vehicle.min_soc + (
            scenario.soc_norm_init_for_grade_pct * (vehicle.max_soc - vehicle.min_soc)
        )
    if scenario.soc_norm_init_for_accel_pct != -1:
        ess_init_soc_accel = vehicle.min_soc + (
            scenario.soc_norm_init_for_accel_pct * (vehicle.max_soc - vehicle.min_soc)
        )

    if get_accel:
        if verbose:
            print(f"{gl.SWEEP_PATH.name}:: Running accel.get_accel")
        zero_to_60, zero_to_30, accel_sdr = accel.get_accel(
            vehicle,
            scenario,
            set_weight_to_max_kg=False,
            ess_init_soc=ess_init_soc_accel,
            verbose=verbose,
        )
    if get_accel_loaded:
        if verbose:
            print(f"{gl.SWEEP_PATH.name}:: Running accel.get_accel loaded")
        zero_to_60_loaded, zero_to_30_loaded, accel_loaded_sdr = accel.get_accel(
            vehicle,
            scenario,
            set_weight_to_max_kg=True,
            ess_init_soc=ess_init_soc_accel,
            verbose=verbose,
        )
    if get_gradability:
        if verbose:
            print(f"{gl.SWEEP_PATH.name}:: Running gradeability.get_gradeability")
        (
            grade_6_mph_ach,
            grade_1_25_mph_ach,
            grade_sdr_6,
            grade_sdr_125,
        ) = gradeability.get_gradeability(
            vehicle,
            scenario,
            ess_init_soc=ess_init_soc_grade,
            set_weight_to_max_kg=True,
        )

    range_dict = fueleconomy.get_range_mi(mpgge, vehicle, scenario)

    out = {
        "discounted_costs_df": discounted_costs_df,
        "veh_oper_cost_set": veh_oper_cost_set,
        "veh_opp_cost_set": veh_opp_cost_set,
        "mpgge": mpgge,
        "veh_msrp_set": veh_cost_set,
        "vehicle": vehicle,
        "vehicle_mass": vehicle_mass,
        "zero_to_60": zero_to_60,
        "zero_to_30": zero_to_30,
        "zero_to_60_loaded": zero_to_60_loaded,
        "zero_to_30_loaded": zero_to_30_loaded,
        "grade_6_mph_ach": grade_6_mph_ach,
        "grade_1_25_mph_ach": grade_1_25_mph_ach,
        "scenario": scenario,
        "design_cycle_sim_drive_record": design_cycle_sdr,
        "accel_sim_drive_record": accel_sdr,
        "accel_loaded_sim_drive_record": accel_loaded_sdr,
        "grade_6_sim_drive_record": grade_sdr_6,
        "grade_1p25_sim_drive_record": grade_sdr_125,
        "disc_cost": discounted_tco_dol,
        "opportunity_cost_set": oppy_cost_set,
        "tot_cost": tot_cost_dol,
        "tco_files": tco_files,
    }
    out.update(range_dict)
    return out