REopt Inputs
Inputs to run_reopt
can be provided in one of three formats:
- a file path (string) to a JSON file,
- a
Dict
, or - using the
REoptInputs
struct
Any one of these types can be passed to the run_reopt
method.
The first option is perhaps the most straightforward one. For example, the minimum requirements for a JSON scenario file would look like:
{
"Site": {
"longitude": -118.1164613,
"latitude": 34.5794343
},
"ElectricLoad": {
"doe_reference_name": "MidriseApartment",
"annual_kwh": 1000000.0
},
"ElectricTariff": {
"urdb_label": "5ed6c1a15457a3367add15ae"
}
}
The order of the keys do not matter. Note that this scenario does not include any energy generation technologies and therefore the results can be used as a baseline for comparison to scenarios that result in cost-optimal generation technologies.
To add PV to the analysis simply add a PV key with an empty dictionary (to use default values):
{
"Site": {
"longitude": -118.1164613,
"latitude": 34.5794343
},
"ElectricLoad": {
"doe_reference_name": "MidriseApartment",
"annual_kwh": 1000000.0
},
"ElectricTariff": {
"urdb_label": "5ed6c1a15457a3367add15ae"
},
"PV": {}
}
This scenario will consider the option to purchase a solar PV system to reduce energy costs, and if solar PV can reduce the energy costs then REopt Lite will provide the optimal PV capacity (assuming perfect foresight!). To use other than default values for PV
see the PV struct definition. For example, the site under consideration might have some existing PV capacity to account for, which can be done by setting the existing_kw
key to the appropriate value.
Scenario
The Scenario
struct captures all of the objects that can be included in a scenario.json:
REoptLite.Scenario
— TypeScenario(d::Dict)
Constructor for Scenario struct, where d
has upper-case keys:
- Site (required)
- ElectricTariff (required)
- ElectricLoad (required)
- PV (optional, can be Array)
- Wind (optional)
- Storage (optional)
- ElectricUtility (optional)
- Financial (optional)
- Generator (optional)
- DomesticHotWaterLoad (optional)
- SpaceHeatingLoad (optional)
- ExistingBoiler (optional)
- CHP (optional)
All values of d
are expected to be Dicts
except for PV
, which can be either a Dict
or Dict[]
.
struct Scenario
settings::Settings
site::Site
pvs::Array{PV, 1}
wind::Wind
storage::Storage
electric_tariff::ElectricTariff
electric_load::ElectricLoad
electric_utility::ElectricUtility
financial::Financial
generator::Generator
dhw_load::DomesticHotWaterLoad
space_heating_load::SpaceHeatingLoad
existing_boiler::ExistingBoiler
chp::CHP
end
Scenario(fp::String)
Consruct Scenario from filepath fp
to JSON with keys aligned with the Scenario(d::Dict)
method.
BAUScenario
The BAUScenario
struct is for running Business-As-Usual scenarios, i.e. without any new technologies. The results of the BAU scenario are used to calculate other Financial
results such as the net present value.
REoptLite.BAUScenario
— TypeBAUScenario(s::Scenario)
Constructor for BAUScenario (BAU = Business As Usual) struct.
- sets the PV and Generator maxkw values to the existingkw values
- sets wind and storage max_kw values to zero
Site
REoptLite.Site
— TypeSite
Inputs related to the physical location:
function Site(;
latitude::Real,
longitude::Real,
land_acres::Union{Float64, Nothing} = nothing,
roof_squarefeet::Union{Float64, Nothing} = nothing,
min_resil_timesteps::Int=0,
mg_tech_sizes_equal_grid_sizes::Bool = true,
node::Int = 1,
)
ElectricLoad
REoptLite.ElectricLoad
— TypeElectricLoad(;
loads_kw::Union{Missing, Array{<:Real,1}} = missing,
year::Int = 2020,
doe_reference_name::Union{Missing, String} = missing,
blended_doe_reference_names::Array{String, 1} = String[],
blended_doe_reference_percents::Array{<:Float64,1} = Float64[],
city::Union{Missing, String} = missing,
annual_kwh::Union{Real, Nothing} = nothing,
monthly_totals_kwh::Array{<:Real,1} = Real[],
critical_loads_kw::Union{Missing, Array{Real,1}} = missing,
loads_kw_is_net::Bool = true,
critical_loads_kw_is_net::Bool = false,
critical_load_pct::Real = 0.5
)
Must provide either loads_kw
or [doe_reference_name
and city
] or doe_reference_name
or [blended_doe_reference_names
and blended_doe_reference_percents
].
When only doe_reference_name
is provided the Site.latitude
and Site.longitude
are used to look up the ASHRAE climate zone, which determines the appropriate DoE Commercial Reference Building profile.
When using the [doe_reference_name
and city
] option, choose city
from one of the cities used to represent the ASHRAE climate zones:
- Albuquerque
- Atlanta
- Baltimore
- Boulder
- Chicago
- Duluth
- Fairbanks
- Helena
- Houston
- LosAngeles
- Miami
- Minneapolis
- Phoenix
- SanFrancisco
- Seattle
and doe_reference_name
from:
- FastFoodRest
- FullServiceRest
- Hospital
- LargeHotel
- LargeOffice
- MediumOffice
- MidriseApartment
- Outpatient
- PrimarySchool
- RetailStore
- SecondarySchool
- SmallHotel
- SmallOffice
- StripMall
- Supermarket
- Warehouse
- FlatLoad
Each city
and doe_reference_name
combination has a default annual_kwh
, or you can provide your own annual_kwh
or monthly_totals_kwh
and the reference profile will be scaled appropriately.
ElectricTariff
REoptLite.ElectricTariff
— Typestruct ElectricTariff
- data for electric tariff in reopt model
- can be defined using custom rates or URDB rate
- very similar to the URDB struct but includes export rates and bins
REoptLite.ElectricTariff
— MethodElectricTariff
ElectricTariff constructor
function ElectricTariff(;
urdb_label::String="",
urdb_response::Dict=Dict(),
urdb_utility_name::String="",
urdb_rate_name::String="",
year::Int=2020,
time_steps_per_hour::Int=1,
NEM::Bool=false,
wholesale_rate::T=nothing,
monthly_energy_rates::Array=[],
monthly_demand_rates::Array=[],
blended_annual_energy_rate::S=nothing,
blended_annual_demand_rate::R=nothing,
remove_tiers::Bool=false,
demand_lookback_months::AbstractArray{Int64, 1}=Int64[],
demand_lookback_percent::Float64=0.0,
demand_lookback_range::Int=0,
) where {
T <: Union{Nothing, Int, Float64, Array},
S <: Union{Nothing, Int, Float64},
R <: Union{Nothing, Int, Float64}
}
The NEM
boolean is determined by the ElectricUtility.netmeteringlimit_kw. There is no need to pass in a NEM
value.
Financial
REoptLite.Financial
— TypeFinancial
Financial data struct with inner constructor:
function Financial(;
om_cost_escalation_pct::Float64 = 0.025,
elec_cost_escalation_pct::Float64 = 0.023,
boiler_fuel_cost_escalation_pct::Float64
chp_fuel_cost_escalation_pct::Float64
offtaker_tax_pct::Float64 = 0.26,
offtaker_discount_pct = 0.083,
third_party_ownership::Bool = false,
owner_tax_pct::Float64 = 0.26,
owner_discount_pct::Float64 = 0.083,
analysis_years::Int = 25,
value_of_lost_load_per_kwh::Union{Array{R,1}, R} where R<:Real = 1.00,
microgrid_upgrade_cost_pct::Float64 = 0.3,
macrs_five_year::Array{Float64,1} = [0.2, 0.32, 0.192, 0.1152, 0.1152, 0.0576], # IRS pub 946
macrs_seven_year::Array{Float64,1} = [0.1429, 0.2449, 0.1749, 0.1249, 0.0893, 0.0892, 0.0893, 0.0446]
)
When third_party_ownership
is false
the offtaker's discount and tax percentages are used throughout the model:
if !third_party_ownership
owner_tax_pct = offtaker_tax_pct
owner_discount_pct = offtaker_discount_pct
end
ElectricUtility
REoptLite.ElectricUtility
— TypeElectricUtility
Base.@kwdef struct ElectricUtility
outage_start_time_step::Int=0 # for modeling a single outage, with critical load spliced into the baseline load ...
outage_end_time_step::Int=0 # ... utiltity production_factor = 0 during the outage
allow_simultaneous_export_import::Bool=true # if true the site has two meters (in effect)
# variables below used for minimax the expected outage cost,
# with max taken over outage start time, expectation taken over outage duration
outage_start_timesteps::Array{Int,1}=Int[] # we minimize the maximum outage cost over outage start times
outage_durations::Array{Int,1}=Int[] # one-to-one with outage_probabilities, outage_durations can be a random variable
outage_probabilities::Array{Real,1}=[1.0]
outage_timesteps::Union{Missing, UnitRange} = isempty(outage_durations) ? missing : 1:maximum(outage_durations)
scenarios::Union{Missing, UnitRange} = isempty(outage_durations) ? missing : 1:length(outage_durations)
end
PV
REoptLite.PV
— TypePV
struct with inner constructor:
function PV(;
tilt::Real,
array_type::Int=1,
module_type::Int=0,
losses::Real=0.14,
azimuth::Real=180,
gcr::Real=0.4,
radius::Int=0,
name::String="PV",
location::String="both",
existing_kw::Real=0,
min_kw::Real=0,
max_kw::Real=1.0e9,
installed_cost_per_kw::Real=1600.0,
om_cost_per_kw::Real=16.0,
degradation_pct::Real=0.005,
macrs_option_years::Int = 5,
macrs_bonus_pct::Float64 = 1.0,
macrs_itc_reduction::Float64 = 0.5,
kw_per_square_foot::Float64=0.01,
acres_per_kw::Float64=6e-3,
inv_eff::Float64=0.96,
dc_ac_ratio::Float64=1.2,
prod_factor_series::Union{Missing, Array{Real,1}} = missing,
federal_itc_pct::Float64 = 0.26,
federal_rebate_per_kw::Float64 = 0.0,
state_ibi_pct::Float64 = 0.0,
state_ibi_max::Float64 = 1.0e10,
state_rebate_per_kw::Float64 = 0.0,
state_rebate_max::Float64 = 1.0e10,
utility_ibi_pct::Float64 = 0.0,
utility_ibi_max::Float64 = 1.0e10,
utility_rebate_per_kw::Float64 = 0.0,
utility_rebate_max::Float64 = 1.0e10,
production_incentive_per_kwh::Float64 = 0.0,
production_incentive_max_benefit::Float64 = 1.0e9,
production_incentive_years::Int = 1,
production_incentive_max_kw::Float64 = 1.0e9
can_net_meter::Bool = true,
can_wholesale::Bool = true,
can_export_beyond_nem_limit::Bool = true
)
If tilt
is not provided then it is set to the Site.latitude
. (Which is handled in the Scenario
struct.)
Storage
REoptLite.ElecStorage
— TypeStorage
Currently only electric storage is modeled but thermal storage will be added soon.
TODO update this doc string and perhaps the way we define arbitrary storage.
Base.@kwdef struct ElecStorage <: AbstractStorage
min_kw::Float64 = 0.0
max_kw::Float64 = 1.0e4
min_kwh::Float64 = 0.0
max_kwh::Float64 = 1.0e6
internal_efficiency_pct::Float64 = 0.975
inverter_efficiency_pct::Float64 = 0.96
rectifier_efficiency_pct::Float64 = 0.96
soc_min_pct::Float64 = 0.2
soc_init_pct::Float64 = 0.5
can_grid_charge::Bool = true
installed_cost_per_kw::Float64 = 840.0
installed_cost_per_kwh::Float64 = 420.0
replace_cost_per_kw::Float64 = 410.0
replace_cost_per_kwh::Float64 = 200.0
inverter_replacement_year::Int = 10
battery_replacement_year::Int = 10
macrs_option_years::Int = 7
macrs_bonus_pct::Float64 = 1.0
macrs_itc_reduction::Float64 = 0.5
total_itc_pct::Float64 = 0.0
total_rebate_per_kw::Float64 = 0.0
total_rebate_per_kwh::Float64 = 0.0
end
Wind
REoptLite.Wind
— TypeWind
struct with inner constructor:
function Wind(;
min_kw = 0.0,
max_kw = 1.0e9,
installed_cost_per_kw = 0.0,
om_cost_per_kw = 40.0,
prod_factor_series = missing,
size_class = "",
wind_meters_per_sec = [],
wind_direction_degrees = [],
temperature_celsius = [],
pressure_atmospheres = [],
macrs_option_years = 5,
macrs_bonus_pct = 0.0,
macrs_itc_reduction = 0.5,
federal_itc_pct = 0.26,
federal_rebate_per_kw = 0.0,
state_ibi_pct = 0.0,
state_ibi_max = 1.0e10,
state_rebate_per_kw = 0.0,
state_rebate_max = 1.0e10,
utility_ibi_pct = 0.0,
utility_ibi_max = 1.0e10,
utility_rebate_per_kw = 0.0,
utility_rebate_max = 1.0e10,
production_incentive_per_kwh = 0.0,
production_incentive_max_benefit = 1.0e9,
production_incentive_years = 1,
production_incentive_max_kw = 1.0e9,
can_net_meter = true,
can_wholesale = true,
can_export_beyond_nem_limit = true
)
size_class
must be one of ["residential", "commercial", "medium", "large"]. If size_class
is not provided then it is determined based on the average electric load.
If no installed_cost_per_kw
is provided (or it is 0.0) then it is determined from:
size_class_to_installed_cost = Dict(
"residential"=> 11950.0,
"commercial"=> 7390.0,
"medium"=> 4440.0,
"large"=> 3450.0
)
The Federal Investment Tax Credit is adjusted based on the size_class
as follows (if the default of 0.3 is not changed):
size_class_to_itc_incentives = Dict(
"residential"=> 0.3,
"commercial"=> 0.3,
"medium"=> 0.12,
"large"=> 0.12
)
If the prod_factor_series
is not provided then NREL's System Advisor Model (SAM) is used to get the wind turbine production factor.
Wind resource values are optional, i.e. (wind_meters_per_sec
, wind_direction_degrees
, temperature_celsius
, and pressure_atmospheres
). If not provided then the resource values are downloaded from NREL's Wind Toolkit. These values are passed to SAM to get the turbine production factor.
Generator
REoptLite.Generator
— TypeGenerator
struct with inner constructor:
function Generator(;
existing_kw::Real=0,
min_kw::Real=0,
max_kw::Real=1.0e6,
installed_cost_per_kw::Real=500.0,
om_cost_per_kw::Real=10.0,
om_cost_per_kwh::Float64=0.0,
fuel_cost_per_gallon::Float64 = 3.0,
fuel_slope_gal_per_kwh::Float64 = 0.076,
fuel_intercept_gal_per_hr::Float64 = 0.0,
fuel_avail_gal::Float64 = 660.0,
min_turn_down_pct::Float64 = 0.0,
only_runs_during_grid_outage::Bool = true,
sells_energy_back_to_grid::Bool = false,
can_net_meter::Bool = false,
can_wholesale::Bool = false,
can_export_beyond_nem_limit = false,
macrs_option_years::Int = 0,
macrs_bonus_pct::Float64 = 1.0,
macrs_itc_reduction::Float64 = 0.0,
federal_itc_pct::Float64 = 0.0,
federal_rebate_per_kw::Float64 = 0.0,
state_ibi_pct::Float64 = 0.0,
state_ibi_max::Float64 = 1.0e10,
state_rebate_per_kw::Float64 = 0.0,
state_rebate_max::Float64 = 1.0e10,
utility_ibi_pct::Float64 = 0.0,
utility_ibi_max::Float64 = 1.0e10,
utility_rebate_per_kw::Float64 = 0.0,
utility_rebate_max::Float64 = 1.0e10,
production_incentive_per_kwh::Float64 = 0.0,
production_incentive_max_benefit::Float64 = 1.0e9,
production_incentive_years::Int = 0,
production_incentive_max_kw::Float64 = 1.0e9,
)
DomesticHotWaterLoad
REoptLite.DomesticHotWaterLoad
— TypeDomesticHotWaterLoad
There are many ways in which a DomesticHotWaterLoad can be defined:
- When using either
doe_reference_name
orblended_doe_reference_names
in anElectricLoad
one only needs to provide the input key "DomesticHotWaterLoad" in theScenario
(JSON or Dict). In this case the values from DoE reference names from theElectricLoad
will be used to define theDomesticHotWaterLoad
. - One can provide the
doe_reference_name
orblended_doe_reference_names
directly in theDomesticHotWaterLoad
key within theScenario
. These values can be combined with theannual_mmbtu
ormonthly_mmbtu
inputs to scale the DoE reference profile(s). - One can provide the
fuel_loads_mmbtu_per_hour
value in theDomesticHotWaterLoad
key within theScenario
.
function DomesticHotWaterLoad(;
doe_reference_name::String = "",
city::String = "",
blended_doe_reference_names::Array{String, 1} = String[],
blended_doe_reference_percents::Array{<:Real,1} = Real[],
annual_mmbtu::Union{Real, Nothing} = nothing,
monthly_mmbtu::Array{<:Real,1} = Real[],
fuel_loads_mmbtu_per_hour::Array{<:Real,1} = Real[],
time_steps_per_hour::Int = 1,
latitude::Real=0.0,
longitude::Real=0.0
)
SpaceHeatingLoad
REoptLite.SpaceHeatingLoad
— TypeSpaceHeatingLoad
There are many ways in which a SpaceHeatingLoad can be defined:
- When using either
doe_reference_name
orblended_doe_reference_names
in anElectricLoad
one only needs to provide the input key "SpaceHeatingLoad" in theScenario
(JSON or Dict). In this case the values from DoE reference names from theElectricLoad
will be used to define theSpaceHeatingLoad
. - One can provide the
doe_reference_name
orblended_doe_reference_names
directly in theSpaceHeatingLoad
key within theScenario
. These values can be combined with theannual_mmbtu
ormonthly_mmbtu
inputs to scale the DoE reference profile(s). - One can provide the
fuel_loads_mmbtu_per_hour
value in theSpaceHeatingLoad
key within theScenario
.
function SpaceHeatingLoad(;
doe_reference_name::String = "",
city::String = "",
blended_doe_reference_names::Array{String, 1} = String[],
blended_doe_reference_percents::Array{<:Real,1} = Real[],
annual_mmbtu::Union{Real, Nothing} = nothing,
monthly_mmbtu::Array{<:Real,1} = Real[],
fuel_loads_mmbtu_per_hour::Array{<:Real,1} = Real[],
time_steps_per_hour::Int = 1,
latitude::Real=0.0,
longitude::Real=0.0
)
ExistingBoiler
REoptLite.ExistingBoiler
— TypeExistingBoiler
function ExistingBoiler(;
max_heat_demand_kw::Real=0,
production_type::String = "hot_water",
chp_prime_mover::String = "",
max_thermal_factor_on_peak_load::Real = 1.25,
efficiency::Real = 0.0,
fuel_cost_per_mmbtu::Union{<:Real, AbstractVector{<:Real}} = 0.0,
time_steps_per_hour::Int = 1
)
CHP
REoptLite.CHP
— TypeCHP
struct with outer constructor:
prime_mover::String = ""
# following must be provided by user if not providing prime_mover
installed_cost_per_kw::Union{Float64, AbstractVector{Float64}} = NaN
tech_sizes_for_cost_curve::Union{Float64, AbstractVector{Float64}} = NaN
om_cost_per_kwh::Float64 = NaN
elec_effic_half_load = NaN
elec_effic_full_load::Float64 = NaN
min_turn_down_pct::Float64 = NaN
thermal_effic_full_load::Float64 = NaN
thermal_effic_half_load::Float64 = NaN
min_allowable_kw::Float64 = NaN
max_kw::Float64 = NaN
cooling_thermal_factor::Float64 = NaN # only needed with cooling load
unavailability_periods::AbstractVector{Dict} = Dict[]
size_class::Int = 1
min_kw::Float64 = 0.0
fuel_cost_per_mmbtu::Union{<:Real, AbstractVector{<:Real}} = 0.0,
om_cost_per_kw::Float64 = 0.0
om_cost_per_hr_per_kw_rated::Float64 = 0.0
supplementary_firing_capital_cost_per_kw::Float64 = 150.0
supplementary_firing_max_steam_ratio::Float64 = 1.0
supplementary_firing_efficiency::Float64 = 0.92
standby_rate_us_dollars_per_kw_per_month = 0.0
reduces_demand_charges = true
use_default_derate::Bool = true
max_derate_factor::Float64 = 1.0
derate_start_temp_degF::Float64 = 0.0
derate_slope_pct_per_degF::Float64 = 0.0
can_supply_steam_turbine::Bool=false
macrs_option_years::Int = 5
macrs_bonus_pct::Float64 = 1.0
macrs_itc_reduction::Float64 = 0.5
federal_itc_pct::Float64 = 0.1
federal_rebate_per_kw::Float64 = 0.0
state_ibi_pct::Float64 = 0.0
state_ibi_max::Float64 = 1.0e10
state_rebate_per_kw::Float64 = 0.0
state_rebate_max::Float64 = 1.0e10
utility_ibi_pct::Float64 = 0.0
utility_ibi_max::Float64 = 1.0e10
utility_rebate_per_kw::Float64 = 0.0
utility_rebate_max::Float64 = 1.0e10
production_incentive_per_kwh::Float64 = 0.0
production_incentive_max_benefit::Float64 = 1.0e9
production_incentive_years::Int = 0
production_incentive_max_kw::Float64 = 1.0e9
can_net_meter::Bool = false
can_wholesale::Bool = false
can_export_beyond_nem_limit::Bool = false
can_curtail::Bool = false
# emissions_factor_lb_CO2_per_mmbtu::Float64
Settings
REoptLite.Settings
— TypeSettings
Data struct for top-level Scenario settings. Captures inputs that do not logically fall under any of the other data structs.
Base.@kwdef struct Settings
time_steps_per_hour::Int = 1
run_bau::Bool = true
end