Standoff Monte Carlo#

See Monte Carlo - Arrhenius Degredation for a more in depth guide. Steps will be shortened for brevity. This journal applies a Monte Carlo to the Standoff Calculation

# if running on google colab, uncomment the next line and execute this cell to install the dependencies and prevent "ModuleNotFoundError" in later cells:
# !pip install pvdeg
import pvlib
import numpy as np
import pandas as pd
import json
import pvdeg
import matplotlib.pyplot as plt
# This information helps with debugging and getting support :)
import sys
import platform

print("Working on a ", platform.system(), platform.release())
print("Python version ", sys.version)
print("Pandas version ", pd.__version__)
print("Pvlib version ", pvlib.__version__)
print("Pvdeg version ", pvdeg.__version__)
Working on a  Linux 6.11.0-1018-azure
Python version  3.11.14 (main, Oct 10 2025, 01:03:14) [GCC 13.3.0]
Pandas version  2.3.3
Pvlib version  0.13.1
Pvdeg version  0.1.dev1+g160731023

Simple Standoff Calculation#

This is copied from another tutorial called 4 - Standards.ipynb, please visit this page for a more in depth explanation of the process for a single standoff calculation.

Please use your own API key: The block below makes an NSRDB API to get weather and meta data. This tutorial will work with the DEMO Key provided, but it will take you less than 3 minutes to obtain your own at https://developer.nrel.gov/signup/ so register now.)
# Load weather data from locally saved files to avoid API rate limits
WEATHER = pd.read_csv("../data/psm4_nyc.csv", index_col=0, parse_dates=True)
with open("../data/meta_nyc.json", "r") as f:
    META = json.load(f)

# To use the NSRDB API instead, uncomment the lines below and add your API key
# Get your API key at: https://developer.nrel.gov/signup/
# weather_db = "PSM4"
# weather_id = (40.633365593159226, -73.9945801019899)  # Manhattan, NYC
# weather_arg = {
#     "api_key": "YOUR_API_KEY",
#     "email": "user@mail.com",
#     "map_variables": True,
# }
# WEATHER, META = pvdeg.weather.get(weather_db, weather_id, **weather_arg)
# simple standoff calculation
height1 = pvdeg.standards.standoff(weather_df=WEATHER, meta=META)

# more arguments standoff calculation
height2 = pvdeg.standards.standoff(
    weather_df=WEATHER,
    meta=META,
    tilt=None,
    azimuth=180,
    sky_model="isotropic",
    temp_model="sapm",
    x_0=6.1,
    wind_factor=0.33,  # default
)

print(height1)
print(height2)
The array surface_tilt angle was not provided, therefore the latitude of  40.6 was used.
The array azimuth was not provided, therefore an azimuth of  180.0 was used.
The array surface_tilt angle was not provided, therefore the latitude of  40.6 was used.
          x      T98_0    T98_inf
0  0.522443  71.778148  48.754265
          x      T98_0    T98_inf
0  0.490293  71.778148  48.754265

Defining Correlation Coefficients, Mean and Standard Deviation For Monte Carlo Simulation#

We will leave the list of correlations blank because our variables are not correlated. For a correlated use case visit the Monte Carlo - Arrhenius.ipynb tutorial.

Mean and standard deviation must always be populated if being used to create a dataset. However, you can feed your own correlated or uncorrelated data into the simulate function but column names must be consistent.

# These numbers may not make sense in the context of the problem but work for demonstraiting the process
stats = {"X_0": {"mean": 5, "stdev": 3}, "wind_factor": {"mean": 0.33, "stdev": 0.5}}

corr_coeff = []

samples = pvdeg.montecarlo.generateCorrelatedSamples(corr_coeff, stats, 500)
print(samples)
           X_0  wind_factor
0     3.189782     0.907126
1     1.432232     0.075611
2     5.381648     0.375038
3     4.762439     0.967883
4    11.125515    -0.013429
..         ...          ...
495   5.251049     0.356550
496   6.273676     0.294911
497   6.832677     0.628781
498   0.134452     0.488315
499   1.528848     0.601170

[500 rows x 2 columns]

Standoff Monte Carlo Inputs#

When using the pvdeg.montecarlo.simulate() function on a target function all of the target function’s required arguments must still be given. Our non-changing arguments will be stored in a dictionary. The randomized monte carlo input data will also be passed to the target function via the simulate function. All required target function arguments should be contained between the column names of the randomized input data and fixed argument dictionary,

# defining arguments to pass to the target function, standoff() in this case
function_kwargs = {
    "weather_df": WEATHER,
    "meta": META,
    "azimuth": 180,
    "tilt": 0,
    "temp_model": "sapm",
    "sky_model": "isotropic",
    "conf_0": "insulated_back_glass_polymer",
    "conf_inf": "open_rack_glass_polymer",
    "T98": 70,
    "irradiance_kwarg": {},
    "conf_0_kwarg": {},
    "conf_inf_kwarg": {},
    "model_kwarg": {},
}

# notice how we left off parts we want to use in the monte carlo simulation because they are already contained in the dataframe

results = pvdeg.montecarlo.simulate(
    func=pvdeg.standards.standoff,
    correlated_samples=samples,
    **function_kwargs,
)

Dealing With Series#

Notice how our results are contained in a pandas series instead of a dataframe.

This means we have to do an extra step to view our results. Run the block below to confirm that our results are indeed contained in a series. And convert them into a simpler dataframe.

print(type(results))

# Convert from pandas Series to pandas DataFrame
results_df = pd.concat(results.tolist()).reset_index(drop=True)
<class 'pandas.core.series.Series'>
print(results_df)
            x      T98_0    T98_inf
0    0.000000  61.658924  42.517190
1    0.137921  72.058479  49.636561
2    0.000000  69.182700  47.576790
3    0.000000  60.460505  41.837820
4    1.464743  72.800305  50.099602
..        ...        ...        ...
495  0.000000  69.388031  47.716319
496  0.025950  70.090259  48.224473
497  0.000000  66.057232  45.390433
498  0.000000  67.997314  46.713890
499  0.000000  66.356040  45.642829

[500 rows x 3 columns]

Viewing Our Data#

Let’s plot the results using a histogram

bin_edges = np.arange(results_df["x"].min(), results_df["x"].max() + 0.1, 0.05)
plt.figure(figsize=(8, 6))
plt.hist(
    results_df["x"],
    bins=bin_edges,
    edgecolor="blue",
    histtype="step",
    linewidth=1,
    label="Standoff Distance",
)
plt.ylabel("Counts (out of n trials)")
plt.xlabel("standoff distance [m]")
plt.axvline(np.mean(results_df["x"]), color="red", label="mean")
plt.axvline(np.median(results_df["x"]), linestyle="--", label="median")

plt.legend()
plt.grid(True)
plt.show()
../_images/e830ddab1cc810d32c49bb1b65909b987740ea647ece181bcc6e814f07a63162.png