h2integrate.simulation.technologies.hydrogen.h2_storage.pressure_vessel.von_mises

h2integrate.simulation.technologies.hydrogen.h2_storage.pressure_vessel.von_mises#

Author: Cory Frontin Date: 23 Jan 2023 Institution: National Renewable Energy Lab Description: This file computes von Mises quantities for hemicylindrical tanks,

replacing Tankinator.xlsx

Sources:
  • Tankinator.xlsx

Functions

S1(p, Re, R0)

S2(p, Re, R0)

S3(p, Re, R0)

cycle(p, R0, thickness_init, Syield, Sultimate)

cycle to find a thickness that satisfies the von Mises criteria

getPeakStresses(p, Re, R0[, proof_factor, ...])

iterate_thickness(p, R0, thickness_in, ...)

apply the wall thickness adjustment factor, return it w/ new thickness

wallThicknessAdjustmentFactor(p, Re, R0, ...)

get factor by which to increase thickness when von Mises stresses exceed material yield safety margins

h2integrate.simulation.technologies.hydrogen.h2_storage.pressure_vessel.von_mises.S1(p, Re, R0)#
h2integrate.simulation.technologies.hydrogen.h2_storage.pressure_vessel.von_mises.S2(p, Re, R0)#
h2integrate.simulation.technologies.hydrogen.h2_storage.pressure_vessel.von_mises.S3(p, Re, R0)#
h2integrate.simulation.technologies.hydrogen.h2_storage.pressure_vessel.von_mises.getPeakStresses(p, Re, R0, proof_factor=1.5, burst_factor=2.25)#
h2integrate.simulation.technologies.hydrogen.h2_storage.pressure_vessel.von_mises.wallThicknessAdjustmentFactor(p, Re, R0, Syield, Sultimate, proof_factor=1.5, burst_factor=2.25)#

get factor by which to increase thickness when von Mises stresses exceed material yield safety margins

h2integrate.simulation.technologies.hydrogen.h2_storage.pressure_vessel.von_mises.iterate_thickness(p, R0, thickness_in, Syield, Sultimate, proof_factor=1.5, burst_factor=2.25)#

apply the wall thickness adjustment factor, return it w/ new thickness

h2integrate.simulation.technologies.hydrogen.h2_storage.pressure_vessel.von_mises.cycle(p, R0, thickness_init, Syield, Sultimate, proof_factor=1.5, burst_factor=2.25, max_iter=10, WTAF_tol=1e-06)#

cycle to find a thickness that satisfies the von Mises criteria