
Advanced Energy System Design (AESD):
Technical Manual for the Records API

(NREL TP-6A20-68924)

Nicholas Brunhart-Lupo Brian Bush Kenny Gruchalla
Michael Rossol

National Renewable Energy Laboratory

9 January 2018

Contents
1 Abstract 2

2 Overview 2

3 Use Cases 5
3.1 Static Data . 5
3.2 Dynamic Data . 9
3.3 Simulations . 10
3.4 Bookmarks . 11
3.5 Filtering . 14

4 Records API, Version 4 15
4.1 Message Groups . 15
4.2 General Conventions . 16
4.3 Messages . 17
4.4 Scalar Value Types . 27

5 Implementations 28
5.1 Haskell Client and Server Library and Applications 28
5.2 C++ Server and Client . 33
5.3 JavaScript Client Library and Web-Based Browser 33
5.4 Python Client Library . 36

6 Appendix 38
6.1 Protocol Buffers for Records API Version 4 38

1

7 Glossary of Acronyms 44

8 References 45

1 Abstract

The Records API (application program interface) for Advanced Energy System
Design (AESD) enables software that serves multidimensional record-oriented
data to interoperate with software than uses such data. In the context of the
Records API, multidimensional data records are simply tuples of real numbers,
integers, and character strings, where each data value is tagged by a variable
name, according to a pre-defined schema, and each record is assigned a unique
integer identifier. Conceptually, these records are isomorphic to rows in a
relational database, JSON objects, or key-value maps. Records servers might
supply static datasets, sensor measurements that periodically update as new
telemetry become available, or the results of simulations as the simulations
generate new output. Records client software might display or analyze the data,
but in the case of simulations the client request the creation of new ensembles
for specified input parameters. It is also possible to chain records clients and
servers together so that a client consuming data from a server might transform
that data and serve it to additional clients.

This minimalist API avoids imposing burdensome metadata, structural, or im-
plementation requirements on developers by relying on open-source technologies
that are readily available for common programming languages. In particular, the
API has been designed to place the least possible burden on services that provide
data. This document defines the message format for the Records API, a transport
mechanism for communicating the data, and the semantics for interpreting it.
The message format is specified as Google Protocol Buffers (Google Developers
2017b) and the transport mechanism uses WebSockets (Internet Engineering
Task Force 2017). We discuss three major use cases for serving and consuming
records data: (i) static data, (ii) dynamically augmented data, (iii) on-demand
simulations, (iv) with filters, and (v) with bookmarks. Separate implementations
of the API exist in C++, Haskell, JavaScript, Python, and R.

2 Overview

Client-server communication in the Records API simply consists of clients sending
Request messages to the server and servers asynchronously sending Response
messages to the client. The request and response messages hold the specifics of the
request or response and the responses are correlated with the requests; however,
it is important to note that multiple responses may occur for a single request, as
when record data are chunked into multiple response, or that an error response

2

may be sent at any time. The nested messages within Request and Response
may in turn contain nested fields and messages providing further details. The
table below shows the correspondence between requests and responses, while
the figure following that shows the containment relationships between message
types.

Table 1: Correlation between requests and responses.

Request Field Response Field
models_metadata models or error
records_data data or error
bookmark_meta bookmarks or error
save_bookmark bookmarks or error
cancel no response or error
work data or error

Metadata messages describe “models”, which are just sources of data, and the
variables they contain. Data record messages hold the data itself. Data records
are simply tuples of real numbers, integers, and character strings, where each
data value is tagged by a variable name, according to a pre-defined schema, and
each record is assigned a unique integer identifier. Conceptually, these records
are isomorphic to rows in a relational database, JSON objects, or key-value maps.
For efficiency and compactness, RecordData may be provided in list format or
tabular format, with the latter format obtained only when the contents of the
table all have the same data type. The data records may be provided in toto or
filtered using filter messages so that only certain fields or records are returned.
The API contains a small embedded language for filtering via set and value
operations. Sets of records may be bookmarked for sharing or later retrieval by
(i) enumerating their unique record identifiers, (ii) defining a range of unique
record identifiers, or (iii) specifying a filtering criterion.

Servers that perform computations or simulations can receive input parameters
via a RequestWork message that contains those input parameters. After the
server has completed its computations, it sends the results as RecordData
messages.

In general the response to a request for data records comes in chunks numbered
in sequence, where each chunk has an identifier, chunk_id, and the response
specifies the identifier of the next chunk, next_chunk_id. Thus, the chunks
form a linked list. The sending of additional chunks can be cancelled using a
RequestCancel message. If the subscribe flag is set when making a request,
the server will respond indefinitely with additional data as it becomes available,
until the subscription is cancelled.

3

Figure 1: Containment relationships between protocol buffer messages in the
Records API.

4

3 Use Cases

In this section we outline some standard use cases for the Records API. UML
Sequence Diagrams (Fowler 2017) illustrate the flow of messages and the messages
themselves are printed in the text format output by the Google protoc tool
(Google Developers 2017a).

3.1 Static Data

The retrieval of static data records forms the simplest use case for the Records
API. A user chooses a particular data source (a “model” in the parlance of the
Records API) and then the data are retrieved and displayed. The visualization
client software communicates with a Records server, which in turn accesses the
static data. The figure below illustrates the process.

Figure 2: Visualizing data from a static source using the Records API.

A Request without model_id specified requests the server to list all models:

version: 4
id: 1
models_metadata {
}

5

The Response from the server provides metadata for all of the models:

version: 4
id: 1
models {

models {
model_id: "example-model-1"
model_name: "Example Model #1"
model_uri: "http://esda.nrel.gov/examples/model-1"
variables {

var_id: 0
var_name: "Example Real Variable"
type: REAL

}
variables {

var_id: 1
var_name: "Example Integer Variable"
type: INTEGER

}
variables {

var_id: 2
var_name: "Example String Variable"
type: STRING

}
models {

model_id: "example-model-2"
model_name: "Example Model #2"
model_uri: "http://esda.nrel.gov/examples/model-2"
variables {

var_id: 0
var_name: "POSIX Epoch"
type: INTEGER

}
variables {

var_id: 1
var_name: "Measurement"
type: REAL

}
}
models {

model_id: "example-simulation-3"
model_name: "Example Simulation #3"
model_uri: "http://esda.nrel.gov/examples/simulation-3"
variables {

var_id: 0
var_name: "Input"

6

type: REAL
}
variables {

var_id: 1
var_name: "Time"
type: REAL

}
variables {

var_id: 2
var_name: "Value"
type: REAL

}
inputs {

var_id: 0
interval {

first_value: 0
second_value: 100

}
}

}
}

Note that the response above is tagged with the same id as the request: this
allows the client to correlate responses with the particular requests it makes.
Next the user might request three records from the first model:

version: 4
id: 2
records_data {

model_id: "example-model-1"
max_records: 3

}

The record data might be returned as two chunks, where the first chunk is

version: 4
id: 2
chunk_id: 1
next_chunk_id: 2
data {

list {
records {

record_id: 10
variables {

var_id: 0
value: 10.5

}
variables {

7

var_id: 1
value: -5

}
variables {

var_id: 2
value: "first"

}
}
records {

record_id: 20
variables {

var_id: 0
value: 99.2

}
variables {

var_id: 1
value: 108

}
variables {

var_id: 2
value: "second"

}
}

}
}

and the last chunk is:

version: 4
id: 2
chunk_id: 2
next_chunk_id: 0
data {

list {
records {

record_id: 30
variables {

var_id: 0
value: -15.7

}
variables {

var_id: 1
value: 30

}
variables {

var_id: 2
value: "third"

8

}
}

}
}

3.2 Dynamic Data

As shown in the following figure retrieving data from a dynamic source proceeds
quite similarly to retrieving data from a static source. The only essential
difference is that the server repeatedly sends additional responses containing
new data, until a request to cancel is sent.

Figure 3: Visualizing data from a dynamic source using the Records API.

When requesting dynamic data, it is advisable to set the subscribe flag in the
request for data:

9

version: 4
id: 2
subscribe: true
records_data {

model_id: "example-model-2"
}

The RequestCancel message is the cancel field Request and must include the
id of the request to be cancelled:

version: 4
cancel {

id: 2
}

3.3 Simulations

The model Example Simulation #3 in the Static Data use case is a simulation
model, as evidenced by the presence of the inputs field in its metadata. The
following figure shows a typical interaction with a simulation-based model via
the Records API.

Figure 4: Steering and visualizing simulation results using the Records API.

10

The RequestWork message, which is contained in the work field of a Request,
specifies the input for a simulation to be run:

version: 4
id: 3
work {

model_id: "example-simulation-3"
inputs {

var_id: 0
value: 50

}
}

The response to this message will be data for the result of the simulation.

3.4 Bookmarks

Once data from a model is loaded, it may be bookmarked. One simply supplies a
description of the data to be bookmarked. Bookmarks can be listed and loaded,
as shown in the following figure.

To create a bookmark for a specific list of records, simply supply their record
identifiers as part of a BookmarkMeta message in the save_bookmark field of
Request:

version: 4
id: 4
save_bookmark {

model_id: "example-model-1"
new_bookmark {

bookmark_name: "Sample Bookmark"
set {

record_ids: 10
record_ids: 30

}
}

}

The response will be the same bookmark, but with the bookmark_id field added:

version: 4
id: 4
bookmarks {

bookmark_metas {
bookmark_id: "bookmark-1"
bookmark_name: "Sample Bookmark"
set {

record_ids: 10

11

Figure 5: Creating and retrieving a bookmark and its associated data.

12

record_ids: 30
}

}
}

The user or another user can retrieve the records corresponding to the bookmark:

version: 4
id: 5
records_data {

model_id: "example-model-1"
bookmark_id: "bookmark-1"

}

This will return precisely the bookmarked records:

version: 4
id: 5
data {

list {
records {

record_id: 10
variables {

var_id: 0
value: 10.5

}
variables {

var_id: 1
value: -5

}
variables {

var_id: 2
value: "first"

}
}
records {

record_id: 30
variables {

var_id: 0
value: -15.7

}
variables {

var_id: 1
value: 30

}
variables {

var_id: 2
value: "third"

13

}
}

}
}

3.5 Filtering

Filtering records can be used to select particular records for retrieval,
via the RequestRecordsData message, or in defining bookmarks, via the
BookmarkMeta message. Filtering of records is accomplished through expressions,
FilterExpression, combining values for variables, DomainMeta, and the set
operators not, union, and intersection, encoded in the messages FilterNot,
FilterUnion, and FitlerIntersection, respectively. For example, the
expression x ≤ 20 would be expressed as the following FilterExpression

filter_domain {
interval {

var_id: 0
last_value: 20

}
}

provided that x has var_id = 0. The expression (10 ≤ x ≤ 20) ∪ (y /∈ {4, 7})
would be expressed as

filter_union {
filter_expressions {

filter_domain {
var_id: 0
first_value: 10
last_value: 20

}
filter_not {

filter_expression {
filter_domain {

var_id: 1
set {

elements: 4
elements: 7

}

}
}

}
}

provided that x has var_id = 0 and y has var_id = 1.

14

4 Records API, Version 4

The AESD Records API consists of Google Protobuf 3 (Google Developers 2017b)
messages used to request and provid data and metadata for record-oriented
information. This section contains the complete specification for version 4 of
the Records API. Clients send Request messages and servers send Response
messages, typically transported via WebSockets (Internet Engineering Task Force
2017).

4.1 Message Groups

The message types in the Records API are organized into thematic groups below.

4.1.1 Requests and Responses

Request messages are sent from client to server and Response messages are sent
from server to client. Request messages contain a specific type of request and
response messages contain a corresponding specific type of response.

• Request
• RequestModelsMeta
• RequestRecordsData
• RequestWork
• RequestBoomarkMeta
• RequestSaveBookmark
• RequestCancel
• Response

4.1.2 Metadata

Metadata messages describe data sources (“models”) and variables.

• ModelMeta
• ModelMetaList
• DomainMeta
• VarMeta
• VariableType
• VarSet
• VarInterval

4.1.3 Data Records

Data are represented as either lists of records or tables of them.

15

• Record
• VarValue
• Value
• RecordData
• RecordList
• RecordTable

4.1.4 Filtering

Records can be filtered by logical operations on conditions for values of variables
in the records.

• FilterExpression
• FilterNot
• FilterIntersection
• FilterUnion
• DomainMeta

4.1.5 Bookmarks

Bookmarks record particular sets or records or conditions for record data.

• BookmarkMeta
• BookmarkMetaList
• BookmarkIntervalContent
• BookmarkSetContent

4.1.6 Miscellaneous

The following messages wrap data types for the content of records.

• DoubleList
• IntegerList
• StringList
• OptionalInt32
• OptionalUInt32
• OptionalString

4.2 General Conventions

All fields are technically optional in ProtoBuf 3, but some fields may be required
in each message type in order for the message to be semantically valid. In the
following specifications for the messages, fields are annotated as semantically

16

required or semantically optional. Also, the specification notes when field in the
protobuf oneof construct are required or mutually exclusive.

Furthermore, one cannot determine whether an optional value has been set or
not if it is just a value, as opposed to a message. That is not true for fields
that are messages, where the absence of the field truly indicates that the value
is absent, not just a default or unset value. The message OptionalString, for
example, is used in this API to indicate whether a character string value is truly
present. Thus RequestModelsMeta has a model_id field that indicates whether
the request is for all models, when the field has not been set, or for a specific
one, when the field has been set.

Throughout this specification, the following types are used for identifiers: *
var_id is int32 * model_id is string * record_id is int64

This specification conforms to Protocol Buffers version 3.

4.3 Messages

4.3.1 BookmarkIntervalContent

A range of record identifiers can specify the content of a bookmark. Bookmark
interval content provides a convenient means to bookmark a contiguous selection
of records in a model.

Both fields in this message are optional:

• If neither field is present, the bookmark interval designates all records in
the model.

• If only first_recordis present, the bookmark interval designates all
records starting from that record identifier.

• If only last_record is present, the bookmark interval designates all records
ending at that record identifier. For a dynamic model, such a bookmark
interval includes all “future” records.

• If both fields are present, the bookmark interval designates all records
between the two identifiers, inclusively.

Field Type Label Description
first_record int64 optional [semantically optional] The identifier for the first record in the interval.
last_record int64 optional [semantically optional] The identifier for the last record in the interval.

4.3.2 BookmarkMeta

A bookmark is metadata defining a subset of records in a model.

There are three alternatives to specifying a bookmark:

17

https://developers.google.com/protocol-buffers/docs/proto3#oneof
https://developers.google.com/protocol-buffers/docs/proto3

1. Interval content specifies a range of records in the bookmark.
2. Set content specifies a list of records in the bookmark.
3. A filter expression defines a set of logical conditions for determining whether

a record is in the bookmark.

Exactly one of interval, set, or filter must be specified in this message.

Field Type Label Description
bookmark_id string optional [semantically optional] When creating a new bookmark, this field must be empty: the server will create a unique identifier for the bookmark. This identifier uniquely identifies the bookmark on the particular server.
bookmark_name string optional [semantically required] A name for the bookmark, which is useful for displaying the bookmark to users. This need not be unique, although it is recommended to be so.
interval BookmarkIntervalContent optional The range of records in the bookmark.
set BookmarkSetContent optional The list of records in the bookmark.
filter FilterExpression optional Logical conditions for defining which records are in the bookmark.

4.3.3 BookmarkMetaList

Bookmarks may be grouped into lists (sets).

Field Type Label Description
bookmark_metas BookmarkMeta repeated [semantically optional] The bookmarks in the list.

4.3.4 BookmarkSetContent

A list (set) of record identifiers can specify the contents of a bookmark. Bookmark-
set content provides a convenient means to bookmark a specific selection of
non-continuous records in a model.

Field Type Label Description
record_ids int64 repeated [semantically optional] The list of record identifiers in the set.

4.3.5 DomainMeta

The domain (set of valid values) for a variable.

There are two alternatives to specifying a domain:

1. An interval specifies a range of values in the domain.
2. A set specifies a list of values in the domain.

Exactly one of interval or set must be specified in the message.

18

Field Type Label Description
var_id int32 optional [semantically required]
interval VarInterval optional The interval of values in the domain.
set VarSet optional The list of values in the domain.

4.3.6 DoubleList

A list of real numbers.

Field Type Label Description
values double repeated [semantically required] The real numbers.

4.3.7 FilterExpression

A filtering expression is a composition of logical conditions on a record. It can be
used to filter records. There are four alternatives to specifying a filter expression:

1. The logical negation of another filtering expression.
2. The set union of multiple filtering expressions.
3. The set intersection of multiple filtering expressions.
4. Particular values of variables in a record.

Exactly one of filter_not, filter_union, filter_intersection, or
filter_domain must be specified in this message.

Field Type Label Description
filter_not FilterNot optional Logical negation of an expression.
filter_union FilterUnion optional Set union of expressions.
filter_intersection FilterIntersection optional Set intersection of expressions.
filter_domain DomainMeta optional Particular values of variables.

4.3.8 FilterIntersection

Set intersection of filtering expressions. A record satisfies this expression if it
satisfies all filter_expressions.

Field Type Label Description
filter_expressions FilterExpression repeated [semantically required] The expressions to be intersected.

19

4.3.9 FilterNot

Logically negate a filtering expression. A record satisfies this expression if it
does not satisfy filter_expression.

Field Type Label Description
filter_expression FilterExpression optional [semantically required] The expression to be negated.

4.3.10 FilterUnion

Set union of filtering expressions. A record satisfies this expression if it satisfies
any of filter_expressions.

Field Type Label Description
filter_expressions FilterExpression repeated [semantically required] The expressions to be “unioned”.

4.3.11 IntegerList

A list of integers.

Field Type Label Description
values sint64 repeated [semantically required] The integers.

4.3.12 ModelMeta

Metadata for a model.

Field Type Label Description
model_id string optional [semantically required] The unique identifier for the model on the particular server.
model_name string optional [semantically required] A name for the model, useful for display the model to users. This need not be unique, although it is recommended to be so.
model_uri string optional [semantically required] The unique URI for the model. Additional metadata may be obtained by dereferencing that URI.
variables VarMeta repeated [semantically required] Metadata for the variables.
inputs DomainMeta repeated [semantically optional] Metadata for input values to the model, if any.

4.3.13 ModelMetaList

A list of metadata for models.

20

Field Type Label Description
models ModelMeta repeated [semantically optional] The metadata for the models.

4.3.14 OptionalInt32

Wrapper for an optional signed integer.

Field Type Label Description
value int32 optional [semantically required] The signed integer value.

4.3.15 OptionalString

Wrapper for an optional string.

Field Type Label Description
value string optional [semantically required] The character string value.

4.3.16 OptionalUInt32

Wrapper for an optional unsigned integer.

Field Type Label Description
value uint32 optional [semantically required] The unsigned integer value.

4.3.17 Record

A record is a list of variables and their associated values.

Field Type Label Description
record_id int64 optional [semantically required] A unique identifier for the record.
variables VarValue repeated [semantically optional] The values for variables in the record.

4.3.18 RecordData

A collection of records.

There are two alternatives to specifying record data:

21

1. A list specifies a heterogeneously typed list.
2. A table specifies a homogeneously typed table.

Exactly one of list or table must be present in the message.

Field Type Label Description
list RecordList optional A heterogeneously typed list of records.
table RecordTable optional A homogeneously typed table of records.

4.3.19 RecordList

A list of records. The list is heterogeneous in the sense that each variable may
have a different type.

Field Type Label Description
records Record repeated [semantically optional] The list of records.

4.3.20 RecordTable

A homogeneously typed table of records, where each variable has each type, with
a row for each record and a column for each variable.

This message represents the following table:

Record Identifier var_id[0] var_id[1] . . . var_id[N]

rec_id[0] list[0][0] list[0][1] . . . list[0][N]
rec_id[1] list[1][0] list[1][1] . . . list[1][N]
.
rec_id[M] list[M][0] list[M][1] . . . list[M][N]

The underlying list is a single array, addressable using the following row-major
index formula list[row][var] = array[var + NY * row] where NX = length of
rec_ids and NY = length of var_ids.

Exacly one of reals, integers, or strings must be specified in the message.

Field Type Label Description
var_ids int32 repeated [semantically required] The identifiers of the variables (columns) in the table.
rec_ids int64 repeated [semantically required] The identifiers of the records (rows) in the table.
reals DoubleList optional The real numbers comprising the values of the variables, in row-major order.
integers IntegerList optional The integers comprising the values of the variables, in row-major order.
strings StringList optional The character strings comprising the values of the variables, in row-major order.

22

https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://en.wikipedia.org/wiki/Row-_and_column-major_order
https://en.wikipedia.org/wiki/Row-_and_column-major_order

Field Type Label Description

4.3.21 Request

A request. There are six types of requests:

Request Response
Metadata for model(s) ModelMetaList
Data records RecordData
Metadata for bookmark(s) BookmarkMetaList
Saving a bookmark BookmarkMetaList
Canceling a previous request n/a
New work, such as a simulation RecordData

*Exactly one of models_metadata, records_data, bookmark_meta,
save_bookmark, cancel, or work must be specified in the message.

Field Type Label Description
version uint32 optional [semantically required] The version number for the API. This must be the number four.
id OptionalUInt32 optional [semantically optional, but recommended] An identifier that will be used to tag responses, so that responses can be correlated with requests.
subscribe bool optional [semantically optional] Whether to continue receiving responses indefinitely, as new records become available. This is useful, for example, when a sensor is reporting measurements periodically or when simulations are reporting a series or results. Use RequestCancel to end the subscription.
models_metadata RequestModelsMeta optional Request metadata for model(s).
records_data RequestRecordsData optional Request data records.
bookmark_meta RequestBookmarkMeta optional Request metadata for bookmark(s).
save_bookmark RequestSaveBookmark optional Request save a new bookmark or update an existing one.
cancel RequestCancel optional Request cancel a previous request).
work RequestWork optional Request work (e.g., simulation results).

4.3.22 RequestBookmarkMeta

A request for one or more bookmarks for a model.

The response to this request is BookmarkMetaList

Field Type Label Description
model_id string optional [semantically required] Which model for which to list bookmarks.
bookmark_id OptionalString optional [semantically optional] If empty, list all bookmarks for the model. Otherwise, list just the bookmark metadata for this specific bookmark identifier.

23

4.3.23 RequestCancel

Cancel a previous request.

Field Type Label Description
id OptionalUInt32 optional [semantically required] Which request to cancel.

4.3.24 RequestModelsMeta

A request for metadata about model(s).

The response to this request is ModelMetaList.

Field Type Label Description
model_id OptionalString optional [semantically optional] If absent, the request is for metadata for all models. Otherwise the request is for the specifically identified model.

4.3.25 RequestRecordsData

Request record data for a model.

There are three alternatives to requesting record data.

1. Request all records.
2. Request records in a bookmark.
3. Filter records according to a criterion.

The response to this request is RecordData.

No more than on of bookmark_id or expression may be present in the message.

Field Type Label Description
model_id string optional [semantically required] The identifier for the model.
max_records uint64 optional [semantically optional] If specified, this is the maximum number of records to return. Otherwise all records are returned, although they may be returned as multiple responses, each with a chunk of records.
var_ids int32 repeated [semantically optional] Which variables to include in the response. If this is not specified, all variables will be included.
bookmark_id string optional [semantically optional] Only respond with records in a specified bookmark.
expression FilterExpression optional [semantically optional] Only respond with records matching a specified criterion.

4.3.26 RequestSaveBookmark

A request to create or update a bookmark.

The response to this request is BookmarkMetaList.

24

Field Type Label Description
model_id string optional [semantically required] Which model for which to save the bookmark.
new_bookmark BookmarkMeta optional [semantically optional] If empty, create a new bookmark. (In which case, leave the bookmark_id empty, so that the server will create a unique identifier for the new bookmark.) Otherwise, update an existing bookmark.

4.3.27 RequestWork

Request that the server compute new records based on input values.

The response to this request is RecordData.

Field Type Label Description
model_id string optional [semantically required] The identifier for the model.
inputs VarValue repeated [semantically optional] Which input variables to set to which values.

4.3.28 Response

A response to a request.

Note that a server may send multiple responses to a single request, expressed
as a linked list of chunks. It is strongly recommended that servers chunk by
record_id so that each record is kept intact. A chunk may be empty.

Field Type Label Description
version uint32 optional [semantically required] The version number for the API. This must be the number four.
id OptionalUInt32 optional [semantically optional] A response without an identifier is a notification. Otherwise, the response identifier matches the response identifier for the original request.
chunk_id int32 optional [semantically optional, but recommended] The identifier for this chunk. It is recommended that chunks are number sequentially starting from then number one.
next_chunk_id int32 optional [semantically optional] The identifier of the next chunk, or zero if this is the last chunk.
error string optional An error message.
models ModelMetaList optional A list of model metadata.
data RecordData optional A list of record data.
bookmarks BookmarkMetaList optional A list of bookmark metadata.

4.3.29 StringList

A list of character strings.

Field Type Label Description
values string repeated [semantically required] The character strings.

25

4.3.30 Value

Value that may be a real number, an integer, or a character string

Exactly one of real_value, integer_value, or string_value must be specified
in this message.

Field Type Label Description
real_value double optional The real number.
integer_value int64 optional The integer.
string_value string optional The character string.

4.3.31 VarInterval

A range of values of a variable.

Both fields in this message are optional:

• If neither field is present, the interval designates all values in the domain.
• If only first_valueis present, the interval designates all values starting

from that value.
• If only last_value is present, the bookmark interval designates all values

ending at that value.
• If both fields are present, the interval designates all values between the

two values, inclusive.

Field Type Label Description
first_value Value optional [semantically optional] The first value in the interval.
last_value Value optional [semantically optional] The last value in the interval.

4.3.32 VarMeta

Metadata for a variable.

Field Type Label Description
var_id int32 optional [semantically required] An integer identifying the variable.
var_name string optional [semantically required] The name of the variable.
units string optional [semantically optional] The name of the unit of measure for values of the variable.
si sint32 repeated [semantically optional] The unit of measure expressed as a list of the exponents for the eight fundamental SI quantities [meter, kilogram, second, ampere, kelvin, mole, calenda, radian]. For example, the unit of acceleration m/s2 would be express as [1, 0, -2, 0, 0, 0, 0, 0] because meters has an exponent of positive one and seconds has an exponent of negative two.
scale double optional [semantically optional] An overall scale relative to the fundamental SI scale of the unit of measure. For instance, kilometers would have a scale of 1000 because the fundamental unit of distance is meters.
type VariableType optional [semantically optional] The data type for values of the variable. The default type is real number.

26

4.3.33 VarSet

A set of values for a variable.

Field Type Label Description
elements Value repeated [semantically optional] The list of values in the set.

4.3.34 VarValue

The value of a variable.

Field Type Label Description
var_id int32 optional [semantically required] The identifier for the variable.
value Value optional [semantically required] The value of the variable.

4.3.35 VariableType

The data type for a value.

Name Number Description
REAL 0 A real number.
INTEGER 1 An integer.
STRING 2 A character string.

4.4 Scalar Value Types

.proto Type Notes C++ Type Java Type Python Type
double double double float
float float float float
int32 Uses variable-length encoding. Inefficient for encoding negative numbers – if your field is likely to have negative values, use sint32 instead. int32 int int
int64 Uses variable-length encoding. Inefficient for encoding negative numbers – if your field is likely to have negative values, use sint64 instead. int64 long int/long
uint32 Uses variable-length encoding. uint32 int int/long
uint64 Uses variable-length encoding. uint64 long int/long
sint32 Uses variable-length encoding. Signed int value. These more efficiently encode negative numbers than regular int32s. int32 int int
sint64 Uses variable-length encoding. Signed int value. These more efficiently encode negative numbers than regular int64s. int64 long int/long
fixed32 Always four bytes. More efficient than uint32 if values are often greater than 2ˆ28. uint32 int int
fixed64 Always eight bytes. More efficient than uint64 if values are often greater than 2ˆ56. uint64 long int/long
sfixed32 Always four bytes. int32 int int
sfixed64 Always eight bytes. int64 long int/long

27

.proto Type Notes C++ Type Java Type Python Type
bool bool boolean boolean
string A string must always contain UTF-8 encoded or 7-bit ASCII text. string String str/unicode
bytes May contain any arbitrary sequence of bytes. string ByteString str

5 Implementations

This section provides an overview of the variety of libraries and applications
implementing the Records API (see the table below). In particular, pre-built
applications are available for serving text-based data sources, database queries,
and sensor data feeds. Application Container Images (ACIs) (CoreOS 2017a) of
each have been packed for use with the rkt container engine (CoreOS 2017b).

Table 40: Available client and server applications and libraries for
the Records API.

Client or Server? Library or Application? Data Source Implementation Language Computing Platforms URL
client GUI application any C++ Mac, Winodws, Linux https://github.nrel.gov/d-star/cpp-records
server GUI/CLI applications CSV files C++ Mac, Winodws, Linux https://github.nrel.gov/d-star/cpp-records
client library any Haskell Mac, Windows, Linux https://github.com/NREL/AESD/lib/haskell
server CLI application TSV files Haskell Mac, Windows, Linux https://github.com/NREL/AESD/lib/haskell
server CLI application PostgreSQL Haskell Mac, Windows, Linux https://github.com/NREL/AESD/lib/haskell
server CLI application MySQL Haskell Mac, Windows, Linux https://github.com/NREL/AESD/lib/haskell
server CLI application SQLite3 Haskell Mac, Windows, Linux https://github.com/NREL/AESD/lib/haskell
server CLI application ODBC Haskell Mac, Windows, Linux https://github.com/NREL/AESD/lib/haskell
server CLI application Haystack Haskell Mac, Windows, Linux https://github.com/NREL/AESD/lib/haskell
client library, web application any JavaScript Chrome, Firefox https://github.com/NREL/AESD/lib/javascript
client library any Python any https://github.com/NREL/AESD/lib/python
client library any R any https://github.nrel.gov/d-star/r-records

5.1 Haskell Client and Server Library and Applications

Both client and server applications in Haskell are available for the Records API.
Full documentation resides at <https://github.com/NREL/AESD/lib/haskell>.

5.1.1 Client Library

The client library described below provides the basic functions for interacting
with any Records API server.

28

https://github.com/NREL/AESD/lib/haskell

5.1.1.1 Types

data State

State information for a client.

5.1.1.2 Entry Point

clientMain

Run a client.

Argument Type Descrption
:: String The WebSocket host address.
-> Int The WebSocket port number.
-> String The WebSocket path.
-> (State -> IO ()) Customize the client.
-> IO () Action for running the client.

close

Close a client.

Argument Type Descrption
:: State The state of the client.
-> IO () Action for closing the client.

5.1.1.3 Server Requests

fetchModels

Fetch model metadata.

Argument Type Descrption
:: State The state of the client.
-> IO (Either String [ModelMeta]) Action returning either an error or the models.

fetchRecords

Fetch records from the server.

Argument Type Descrption
:: State The state of the client.
-> ModelIdentifier The model identifier.

29

Argument Type Descrption
-> Maybe Int The maximum number of records to request.
-> IO (Either String [RecordContent]) Action returning either an error or the records.

fetchBookmarks

Fetch bookmark(s).

Argument Type Descrption
:: State The state of the client.
-> ModelIdentifier The model identifier.
-> Maybe BookmarkIdentifier The bookmark identifier, or all bookmarks.
-> IO (Either String [BookmarkMeta]) Action returning either an error or the bookmark(s).

storeBookmark

Save a bookmark.

Argument Type Descrption
:: State The state of the client.
-> ModelIdentifier The model identifier.
-> BookmarkMeta The bookmark metadata.
-> IO (Either String BookmarkMeta) Action returning either an error or the bookmark.

5.1.2 Server Library

The server library provides two options for implementing a Records APIserver.
The AESD.Records.Server module provides a main entry point serverMain,
a type class ModelManager, and a monad ServiceM that implement a skeletal
server which handles all of the WebSocket communication and Protocol Buffer
serialization; an implementer need only create an instance of ModelManager.
Furthermore, the AESD.Records.Server.Manager module provides such an in-
stance InMemoryManager of the type class ModelManger to handle in-memory
caching of data and on-disk persistence of bookmarks; here, an implementer just
calls the function makeInMemoryManager and provides several functions that
retrieve content:

makeInMemoryManager

Construct an in-memory model manager.

30

Argument Type Descrption

Argument Type Descrption
:: Maybe FilePath The name of the journal file.
-> a The initial state.
-> (a -> IO ([ModelMeta], a)) List models in an action modifying the state.
-> (a -> ModelMeta -> IO ([RecordContent], a)) Load record data in an action modifying the state.
-> (a -> ModelMeta -> [VarValue] -> IO ([RecordContent], a)) Performing work in an action modifying the state.
-> IO (InMemoryManager a) Action constructing the manager.

5.1.3 Server Backends

As previously mentioned, prebuilt servers have been implemented for standard
types of data sources.

5.1.3.1 Tab-Separate-Value Files

Serving tab-separated-value (TSV) files is a simple as placing the TSV files
in a directory and starting a server at the command line, with the arguments
specified in the table below:

aesd-file-server <host> <port> <directory> <persistence> <chunkSize>

Table 48: Command-line arguments for serving TSV files.

Parameter Description
host host address to which to bind the service
port port to which to bind the service
directory directory with TSV files to be served
persistence filename for bookmark data
chunkSize number of records return in each chunk

5.1.3.2 Database Queries

The Records API servers have been implemented for the most common database
backends. Each server takes a single command-line argument specifying a YAML
(Oren Ben-Kiki, Clark Evans, Ingy döt Net 2017) configuration file with the
parametes in the table below.

31

Table 49: Parameters for database backends serving the Records
API.

Parameter Description PostgreSQL MySQL SQLite3 ODBC
host host address to which to bind the service required required required required
port port to which to bind the service required required required required
directory directory with queries to be served required required required required
persistence filename for bookmark data optional optional optional optional
chunkSize number of records return in each chunk optional optional optional optional
database database connection information required connection string required connection string required filename required connection string

5.1.3.3 Haystack Sensor Measurements and the “Internet of Things”

Furthermore, a server for Project Haystack (Project Haystack 2017) data feeds,
typically sensor measurements from devices in the “internet of things”, has been
implemented. The server takes a command-line arguments specified in the table
below.

aesd-haystack-server <configuration> <host> <port> <startTime> <persistence> <chunkSize>

Table 50: Command-line arguments for serving Haystack data feeds.

Parameter Description
configuration YAML configuration file for accessing the Haystack service
host host address to which to bind the service
port port to which to bind the service
startTime earliest time to serve, specified in seconds of the POSIX Epoch
persistence filename for bookmark data
chunkSize number of records return in each chunk

The parameters in the YAML configuration file like the one below and are
described in the following table:

siteAccess :
server : xv11skys01.nrel.gov
root : /api/nrel_wt_V7
authorization: ["my username","my password"]
secure : false
timeZone : [-360, true, Denver]

siteIdentifier : NWTCv4
siteURI : http://aesd.nrel.gov/records/v4/nwtc/
siteName : NREL NWTC
siteDescription: Sensors from NREL National Wind Technology Center

32

siteTags :
! 'DC.source' : https://xv11skys01.nrel.gov/proj/nrel_wt_v7
! 'DC.creator' : Brian W Bush <brian.bush@nrel.gov>
! 'DC.description': NREL NWTC sensors

siteMeters :
- 1dca834e-c6af46d6 NWTC Alstom Turbine Electricity Meter Turbine-Alstom kW Demand Forward
- 1dca834e-69a3e57e NWTC Alstom Turbine Electricity Meter Turbine-Alstom kW Demand Reverse
- 1dca834e-f56e11f0 NWTC Alstom Turbine Electricity Meter Turbine-Alstom kWh Delivered Forward

Table 51: YAML configuration parameters for Haystack-based
Records API servers.

Parameter Description Required?
server hostname and port for the Haystack server required
root path to the Haystack REST service required
authorization the username and password for accessing the Haystack REST service optional
secure whether to use HTTPS instead of HTTP optional
timezone timezone information: minutes offset from UTC, whether to use daylight savings time, and the geographic location required
siteIdentifier identifier for the Records API server required
siteURI URI for the Records API server metadata required
siteName name of the Records API server required
siteTags key-value pairs tagging the server with additional information optional
siteMeters list of meters to expose on the Records API server: the Haystack ID is followed by a space and textual description required

5.2 C++ Server and Client

Both client and server applications have been implemented in C++ for the
Records API. See <https://github.nrel.gov/d-star/cpp-records> for details.
There are GUI and command-line applications for serving comma-separated-
value files and a GUI application for browsing Records API data sources.

5.3 JavaScript Client Library and Web-Based Browser

The client library for JavaScript relies on a few simple functions to interact
with a Records API server. Full documentation for the JavaScript client library
is available at <http://github.com/NREL/AESD/lib/javascript>. The figure
below shows the user interface of the general purpose Records API browser using
this JavaScript library.

5.3.1 Connect to a server

connect(wsURL)

33

https://github.nrel.gov/d-star/cpp-records
http://github.com/NREL/AESD/lib/javascript

Figure 6: User interface for the Records API browser.

Here wsURL is simply the URL of the server (e.g., ws://10.40.9.214:503761).
This returns a connection object.

5.3.2 Disconnect from a server

disconnect(connection)

Here connection is the connection object returned by the connect function.

5.3.3 Retrieve list of data models

requestModelsMetadata(connection, modelId, notify, notifyError)

Here connection is the connection object returned by the connect function and
modelId is either the string identifying the model or null if metadata for all
models is requested. After all of the model metadata have been retrieved, the
notify function is called with the list of model metadata objects as its argument;
if an error occurs, notifyError is called with the error message as its argument.
The function requestModelsMetadata returns a result object that contains a
field done indicating whether all model metadata have been retrieved and a field
models listing the model metadata retrieved so far.

34

5.3.4 Retrieve data records

requestRecordsData(connection, modelId, maxRecords, variableIds,
bookmarkId, notify, notifyError)

Here connection is the connection object returned by the connect function and
modelId is the string identifying the model. After all of the data records have
been retrieved, the notify function is called with the list of data records as its
argument; if an error occurs, notifyError is called with the error message as its
argument. The maxRecords argument specifies the maximum number of records
to retrieve, variableIds may list the variables of interest, and bookmarkId
restricts the results to bookmarked records. The function requestRecordsData
returns a result object that contains a field done indicating whether all data
records have been retrieved and a field data listing the data records retrieved so
far.

5.3.5 Retrieve list of bookmarks

requestBookmarkMeta(connection, modelId, bookmarkId, notify,
notifyError)

Here connection is the connection object returned by the connect function,
modelId is the string identifying the model, and bookmarkId is either the string
identifying the bookmark or null if metadata for all bookmarks is requested.
After all of the bookmark metadata have been retrieved, the notify function is
called with the list of bookmark metadata as its argument; if an error occurs,
notifyError is called with the error message as its argument. The function
requestBookmarkMeta returns a result object that contains a field done indicat-
ing whether all bookmark metadata have been retrieved and a field bookmarks
listing the bookmark metadata retrieved so far.

5.3.6 Create/update a bookmark

requestSaveBookmark(connection, modelId, name, filter, notify,
notifyError)

Here connection is the connection object returned by the connect function,
modelId is the string identifying the model, and bookmarkId is null for a new
bookmark or the identifier for a bookmark being updated. The name field names
the bookmark and the filter object describing the filtering operation for the
bookmark. After the bookmark metadata has been created or updated, the
notify function is called with the list of bookmark metadata as its argument;
if an error occurs, then notifyError is called with the error message as its
argument. The function requestSaveBookmark returns a result object that
contains a field done indicating whether all bookmark metadata have been
retrieved and a field bookmarks listing the bookmark metadata retrieved so far.

35

5.4 Python Client Library

Full documentation for the Python client library is available at <http://github.
com/NREL/AESD/lib/python>.

5.4.1 Client API

new_server(self, server_url)

Change server url to which websocket will connnect
Parameters

server_url : 'string'

server url

Returns

self.url : 'string'

server url

send(self, request)

Closes event_loop
Parameters

request : 'proto.request'

proto request message
timeout : 'int'

timeout in seconds for connection

Returns

response : 'list'

List of responses from the server, each response is a proto message

get_model_info(self, model_id)

Sends request of model metadata and extracts response
Parameters

model_id : 'string'

Id of model for which to requst models_metadata
if None requests all models

Returns

model_info : 'list'|'dict'

36

http://github.com/NREL/AESD/lib/python
http://github.com/NREL/AESD/lib/python

List of model's metadata dictionaries for each model in models or
dictionary for model_id

get_data(self, model_id, max_records=1000, variable_ids=None,
bookmark_id=None)

Sends request of model metadata and extracts response
Parameters

model_id : 'string'

Id of model for which to requst records_data
max_records : 'int'

Number or records being request (0 will return all records)
variable_ids : 'list'

List of variable ids (ints) to be requested
Will be returned in same order as request
Default=None, all variables will be returned (order?)

bookmark_id : 'int'
Request records_data based on bookmark id

Returns

data : 'pd.DataFrame'

Concatenated data from each response message
Variable ids replaced with names from model_info

do_work(self, model_id, inputs)

Sends request of model metadata and extracts response
Parameters

model_id : 'string'

Id of model for which to requst records_data
inputs : 'dict'

Dictionary of {var_id: value} pairs

Returns

data : 'pd.DataFrame'

Concatenated data from each response message
Variable ids replaced with names from model_info

get_bookmark_info(self, model_id, bookmark_id)

Sends request of model metadata and extracts response
Parameters

model_id : 'string'

Id of model for which to requst bookmark_meta

37

bookmark_id : 'string'
Id of bookmark for which to request models_metadata
if None request all bookmarks

Returns

model_info : 'list'|'dict'

List of model's metadata dictionaries for each model in models or
dictionary for model_id

save_bookmark(self, model_id, name, content)

Sends request to save new bookmark
Parameters

model_id : 'string'

Id of model for which to requst bookmark_meta
name : 'string'

Name for new bookmark
content : 'list'|'tuple'

Contents of bookmark
list is a bookmark set
tuple is a bookmark interval

Returns

model_info : 'list'|'dict'

List of model's metadata dictionaries for each model in models or
dictionary for model_id

5.4.2 Example

The figure below shows example usage of the Python Records API client.

6 Appendix

6.1 Protocol Buffers for Records API Version 4

syntax = "proto3";
package AesdRecords;

option optimize_for = LITE_RUNTIME;

message OptionalInt32 {

38

Figure 7: Example of a Python session using the Records API

int32 value = 1; /// [semantically required]
}

message OptionalUInt32 {
uint32 value = 1; /// [semantically required]

}

message OptionalString {
string value = 1; /// [semantically required]

}

message Value {
oneof value /// [semantically required]
{

double real_value = 1;
int64 integer_value = 2;
string string_value = 3;

}
}

message DoubleList {
repeated double values = 1; /// [semantically required]

39

}

message IntegerList {
repeated sint64 values = 1; /// [semantically required]

}

message StringList {
repeated string values = 1; /// [semantically required]

}

message BookmarkIntervalContent {
int64 first_record = 1; /// [semantically optional]
int64 last_record = 2; /// [semantically optional]

}

message BookmarkSetContent {
repeated int64 record_ids = 1; /// [semantically optional]

}

message BookmarkMeta {
string bookmark_id = 1; /// [semantically optional]
string bookmark_name = 2; /// [semantically required]
oneof content /// [semantically required]
{

BookmarkIntervalContent interval = 3;
BookmarkSetContent set = 4;
FilterExpression filter = 5;

}
}

message BookmarkMetaList {
repeated BookmarkMeta bookmark_metas = 1; /// [semantically optional]

}

message RequestBookmarkMeta {
string model_id = 1; /// [semantically required]
OptionalString bookmark_id = 2; /// [semantically optional]

}

message RequestSaveBookmark {
string model_id = 1; /// [semantically required]
BookmarkMeta new_bookmark = 2; /// [semantically optional]

}

message FilterExpression {
oneof expression /// [semantically required]

40

{
FilterNot filter_not = 1;
FilterUnion filter_union = 2;
FilterIntersection filter_intersection = 3;
DomainMeta filter_domain = 4;

}
}

message FilterNot {
FilterExpression filter_expression = 1; /// [semantically required]

}

message FilterUnion {
repeated FilterExpression filter_expressions = 1; /// [semantically required]

}

message FilterIntersection {
repeated FilterExpression filter_expressions = 1; /// [semantically required]

}

enum VariableType
{

REAL = 0;
INTEGER = 1;
STRING = 2;

}

message VarMeta {
int32 var_id = 1; /// [semantically required]
string var_name = 2; /// [semantically required]
string units = 3; /// [semantically optional]
repeated sint32 si = 4; /// [semantically optional]
double scale = 5; /// [semantically optional]
VariableType type = 6; /// [semantically optional]

}

message ModelMeta {
string model_id = 1; /// [semantically required]
string model_name = 2; /// [semantically required]
string model_uri = 3; /// [semantically required]
repeated VarMeta variables = 4; /// [semantically required]
repeated DomainMeta inputs = 5; /// [semantically optional]

}

message ModelMetaList {
repeated ModelMeta models = 1; /// [semantically optional]

41

}

message RequestModelsMeta {
OptionalString model_id = 1; /// [semantically optional]

}

message VarInterval {
Value first_value = 1; /// [semantically optional]
Value last_value = 2; /// [semantically optional]

}

message VarSet {
repeated Value elements = 1; /// [semantically optional]

}

message DomainMeta {
int32 var_id = 1; /// [semantically required]
oneof domain /// [semantically required]
{

VarInterval interval = 2;
VarSet set = 3;

}
}

message RequestWork {
string model_id = 1; /// [semantically required]
repeated VarValue inputs = 2; /// [semantically optional]

}

message VarValue {
int32 var_id = 1; /// [semantically required]
Value value = 2; /// [semantically required]

}

message Record {
int64 record_id = 1; /// [semantically required]
repeated VarValue variables = 2; /// [semantically optional]

}

message RecordList {
repeated Record records = 1; /// [semantically optional]

}

message RecordTable {
repeated int32 var_ids = 1; /// [semantically required]
repeated int64 rec_ids = 2; /// [semantically required]

42

oneof list /// [semantically required]
{

DoubleList reals = 3;
IntegerList integers = 4;
StringList strings = 5;

}
}

message RecordData {
oneof style /// [semantically required]
{

RecordList list = 1;
RecordTable table = 2;

}
}

message RequestRecordsData {
string model_id = 1; /// [semantically required]
uint64 max_records = 2; /// [semantically optional]
repeated int32 var_ids = 3; /// [semantically optional]
oneof filter /// [semantically optional]
{

string bookmark_id = 4; /// [semantically optional]
FilterExpression expression = 5; /// [semantically optional]

}
}

message Response {
uint32 version = 1; /// [semantically required]
OptionalUInt32 id = 2; /// [semantically optional]
int32 chunk_id = 3; /// [semantically optional, but recommended]
int32 next_chunk_id = 4; /// [semantically optional]
oneof type /// [semantically optional]
{

string error = 5;
ModelMetaList models = 6;
RecordData data = 7;
BookmarkMetaList bookmarks = 8;

}
}

message RequestCancel {
OptionalUInt32 id = 1; /// [semantically required]

}

message Request {

43

uint32 version = 1; /// [semantically required]
OptionalUInt32 id = 2; /// [semantically optional, but recommended]
bool subscribe = 3; /// [semantically optional]
oneof type /// [semantically required]
{

RequestModelsMeta models_metadata = 4;
RequestRecordsData records_data = 5;
RequestBookmarkMeta bookmark_meta = 6;
RequestSaveBookmark save_bookmark = 7;
RequestCancel cancel = 8;
RequestWork work = 9;

}
}

7 Glossary of Acronyms

Term Definition
ACI Application Container Image
AESD Advanced Energy System Design
API Application Programming Interface
C++ a programming language
CSV comma-separated-value file
Chrome a web browser product
Firefox a web browser product
Google Protocol Buffers a serialization specification
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
Haskell a programming language
IoT the Internet of Thinks
JSON JavaScript Object Notation
JavaScript a programming language
MySQL a database server product
NREL National Renewable Energy Laboratory
ODBC Open Database Connectivity
POSIX Epoch seconds since midnight 1 January 1970 UTC
PostgreSQL a database server product
Project Haystack a specification for data feeds from the Internet of Thinks (IoT)
Python a programming language
R a programming language
REST Representational State Transfer
rkt a containger engine (CoreOS 2017b)
SQLite3 a database server product
TSV tab-separate-value file

44

Term Definition
URI uniform resource identifier
UTC Coordinate Universal Time
WebSockets a communication protocol
YAML YAML Ain’t Markup Language

8 References

CoreOS. 2017a. “App Container Basics - Coreos.” Accessed September 6.
https://coreos.com/rkt/docs/latest/app-container.html.

———. 2017b. “Rkt Container Engine with Coreos.” Accessed September 6.
https://coreos.com/rkt.

Fowler, Martin. 2017. “UML Distilled.” Accessed April 11. http:
//my.safaribooksonline.com/book/software-engineering-and-development/
uml/0321193687/sequence-diagrams/ch04.

Google Developers. 2017a. “Protocol Buffers - Google’s Data Interchange
Format.” Accessed April 11. https://github.com/google/protobuf/blob/master/
README.md.

———. 2017b. “Protocol Buffers | Google Developers.” Accessed April 11.
https://developers.google.com/protocol-buffers/.

Internet Engineering Task Force. 2017. “RFC 6455 - the Websocket Protocol.”
Accessed April 11. https://tools.ietf.org/html/rfc6455.

Oren Ben-Kiki, Clark Evans, Ingy döt Net. 2017. “YAML Specification Index.”
Accessed September 6. http://www.yaml.org/spec/.

Project Haystack. 2017. “Home - Project Haystack.” Accessed September 6.
http://project-haystack.org/.

45

https://coreos.com/rkt/docs/latest/app-container.html
https://coreos.com/rkt
http://my.safaribooksonline.com/book/software-engineering-and-development/uml/0321193687/sequence-diagrams/ch04
http://my.safaribooksonline.com/book/software-engineering-and-development/uml/0321193687/sequence-diagrams/ch04
http://my.safaribooksonline.com/book/software-engineering-and-development/uml/0321193687/sequence-diagrams/ch04
https://github.com/google/protobuf/blob/master/README.md
https://github.com/google/protobuf/blob/master/README.md
https://developers.google.com/protocol-buffers/
https://tools.ietf.org/html/rfc6455
http://www.yaml.org/spec/
http://project-haystack.org/

	Abstract
	Overview
	Use Cases
	Static Data
	Dynamic Data
	Simulations
	Bookmarks
	Filtering

	Records API, Version 4
	Message Groups
	General Conventions
	Messages
	Scalar Value Types

	Implementations
	Haskell Client and Server Library and Applications
	C++ Server and Client
	JavaScript Client Library and Web-Based Browser
	Python Client Library

	Appendix
	Protocol Buffers for Records API Version 4

	Glossary of Acronyms
	References

