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ABSTRACT 
Although building energy modeling has been common 
for many years, large-scale analyses have more recently 
become achievable for more users with access to 
affordable and vast computing power in the cloud.  
Recently, the OpenStudio Parametric Analysis Tool 
was enhanced, allowing users to launch their own cloud 
resources to run a large number of simulations.  This 
paper discusses the process used to dynamically 
provision the machine images used in the cloud 
repeatedly and consistently, to launch and configure 
instances of these images, and finally to run analyses 
using the clustered instances running in the cloud.  
Several open source libraries for performing these tasks 
were used and extended as needed to support building 
energy modeling needs.  This paper also describes 
various use cases of the OpenStudio Cloud 
implementation and outlines future use cases that are 
possible once a large clustered environment is 
available. 

INTRODUCTION  
In September 2013, OpenStudio (NREL 2014a) 
released a version of its Parametric Analysis Tool 
(PAT), which enabled users to run a building energy 
modeling (BEM) analysis on the cloud using their own 
accounts (Macumber 2014).  Two primary challenges 
were addressed to enable this new functionality: (1) 
designing a system architecture that would scale over a 
range of cloud resources; and (2) providing access to 
BEM software such as OpenStudio and EnergyPlus 
(Crawley et al. 2005) on cloud resources.   
The following sections describe the system 
architecture—including the reasons for choosing 
various technologies, the analysis engine, the 
provisioning system, and the development/deployment 
methodology.  In addition, a simple analysis leveraging 
the architecture stack to show the capabilities and 
advantages of a distributed analysis framework is 
described. 

SYSTEM ARCHITECTURE  
Early in the design of this project, it was decided that 
users of OpenStudio would be required to provision, 
run, and manage their own instances of the servers in 
the cloud.  This allowed users to pay for their own 
computation time and required the OpenStudio team to 
architect a solution that could be easily (and 
continuously) updated and easily deployed.  Based on 
the various requirements, it was decided to initially 
implement the solution with Amazon Web Services 
(AWS).  The technologies chosen in the architecture 
will allow this project to be deployed in other hosting 
environments, as described in more detail later. 
The system architecture consists of two pieces, the 
server and the worker.  The server acts as the system 
providing communication between the user and the 
worker nodes.  The server contains a much larger 
software stack because of both its role and its physical 
system resource requirements.  The worker nodes are 
designed to take instructions from the server, generate 
the data point to run, run the data point, and then return 
the results to the server.   
The system architecture is composed entirely of open 
source software and shown in Figure 1. 
 

 
Figure 1 System Architecture Diagram 

 
Each server and worker node is an individual Ubuntu 
12.04 LTS Server operating system.  Both the server 
and the worker use several frameworks to meet 
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requirements for a variety of applications.  These 
frameworks include: 

• Java 1.7 
• Ruby (via rbenv) 
• Python 

The server node contains additional libraries and 
applications that provide specific functionality, 
including: 

• Ruby on Rails:  web application framework.  
The “Web Application” section will be 
discussed this in more detail in the “Web 
Application” section. 

• Apache HTTP Server:  web server. 
• Passenger:  Rails web application server. 
• R:  See “Simulation Executive”. 
• MongoDB-Server:  Database to store analyses 

and results. 
The worker nodes contain libraries and applications 
specific to running the simulations, including: 

• OpenStudio:  Measure application and model 
articulation. 

• EnergyPlus:  Whole Building Model 
Simulation Engine. 

• Radiance:  Lighting/Daylighting Simulation 
Engine. 

• R:  connection to “Simulation Executive”. 
• MongoDB-Client:  connection to MongoDB-

Server. 

SYSTEM PROVISIONING 
The Chef configuration management tool 
(http://opscode.com) was chosen to provision the server 
and worker machine images with all their required 
software in an easy and idempotent manner.  These 
properties are important because OpenStudio builds are 
released every two weeks, and many more images are 
created in the meantime for testing and development.   
Chef is an open source, cross-platform, Ruby-based 
software package that abstracts out the software 
installation process into scripts representing cookbooks 
and recipes.  Users can use already defined cookbooks 
or create their own cookbooks and provide them to the 
community.  For this project, 45 cookbooks are used to 
install all software needed for the server and worker 
nodes.  These cookbooks can be as simple as installing 
the “logrotate” utility, or more complicated such as 
installing Apache Web Server and Passenger.  Chef 
handles dependency tracking and compiles the 
cookbooks before execution to ensure that all required 
cookbooks—and that the specified cookbook 
versions—are available and that all packages are 
installed in the correct order.  The actual workflow of 

Chef is very flexible and commonly used in more 
complex system configurations (Opscode 2014). 
The 45 cookbooks used for the OpenStudio server and 
worker nodes are hosted on Github at 
https://github.com/NREL-cookbooks.  There are two 
competing philosophies on managing Chef cookbooks.  
The first is that a developer should never modify a 
community-provided cookbook directly; instead, the 
cookbook should be wrapped or monkey patched (using 
Chef-rewind) to extend its functionality.  The second is 
to fork the cookbook and extend its functionality 
directly, as needed.  The latter method was decided as 
the workflow, mostly because “newer” community-
provided cookbooks have not been stress tested to 
handle various use cases.  Moreover, the use case of 
running a large number of simulations using custom 
software dependencies, as considered in this paper, is 
not a common use case for Chef, whose focus has been 
on web application and database development. 
During the development of this project, several new 
cookbooks were developed before the Chef community 
had provided them.  EnergyPlus 
(https://github.com/NREL-cookbooks/energyplus) and 
OpenStudio (https://github.com/NREL-cookbooks/ 
openstudio) cookbooks were created to handle the 
installation of EnergyPlus and OpenStudio on Ubuntu, 
Red Hat Enterprise Linux, and CentOS based systems.  
Community cookbooks, when available, were chosen 
over those developed in-house, and extended according 
to the philosophy described above, as needed.   
Cookbooks are typically designed to be compatible 
with multiple flavors of Linux and, less commonly, 
with Windows and Mac OSX.  To install software via 
scripts, all software must be accessible and 
passwordless.  For this reason, EnergyPlus Linux build 
passwords were removed.  OpenStudio builds and 
EnergyPlus builds were placed on web servers that 
allow downloading via wget/curl.   

WEB APPLICATION 
The web application uses the Ruby on Rails framework 
with a Representational State Transfer (REST) 
Application Programming Interface (API).  The 
objective of the web application is to manage analyses, 
which entails queuing analyses (not simulations), 
ensuring worker nodes have the data needed to run an 
analysis, downloading results, and holding the 
Simulation Executive process.   
The website allows users to quickly see the state of the 
simulations, view basic results, and download data of 
interest for client-based evaluation.  The web 
application has simple high-level navigation to traverse 
projects, analyses, measures, variables, and data points 
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(i.e., simulations).  The web application also contains 
basic visualizations, implemented using D3 
(http://d3js.org/), allowing users to navigate the 
parameter space.   
The web server receives instructions via the RESTful 
API in JavaScript Object Notation (JSON).  Some of 
the more important API resources and their 
functionality are the following: 

• POST /project.json – high-level project data 
including name and description.   

• POST /{pid}/analysis.json – analysis input 
arguments and workflow of analysis to be run.   

• POST /{aid}/upload.json – upload of zip file 
containing seed model, weather files, and 
measures.  All content in zip file is sent to 
worker node. 

• POST /{aid}/data_point.json – a specific data 
point to be run, with variables set to specific 
values. 

• POST /{aid}/data_points/batch_upload.json – 
list of specific data points to be run. 

• POST /{aid}/action.json – message sent to the 
analysis to do an action (e.g., start, stop). 

• GET /analysis/{aid}/status.json – list of all 
data points and the run status. 

• GET /data_point/{did}/download – download 
the data point ZIP file with all results from 
simulation. 

 
Figure 2 Data Flow for OpenStudio Server 

The expected JSON formats will be outlined later in the 
paper.  Figure 2 shows the flow of data for the 
OpenStudio Server.  The analysis JSON file can be 

generated from either OpenStudio’s PAT or from a 
custom spreadsheet (and required Ruby gem).  Once the 
server receives the JSON file and uploaded zip file, it 
awaits instruction to start via a simple JSON POST to 
the action endpoint.  The received action will start the 
analysis which consists of first sending the uploaded zip 
file to the worker nodes, then handing off instruction 
and algorithm information to the Simulation Executive 
(R).   
Another important characteristic of the web application 
is its ability to start child processes for each analysis, 
referred to as watchers.  These watchers will 
asynchronously download results from worker nodes to 
the server node, allowing users to download the 
detailed results for each data point simulation from the 
API or the website.  The watchers also have the ability 
to pull out specific data needed for visualization (e.g., 
objective function values). 
The Ruby on Rails application uses several Ruby gems 
(http://rubygems.org/) to provide specific functionality.  
The following list contains the more important gems 
and their functionality 

• Mongoid – Object Document Map for Rails 
Models and MongoDB. 

• Rserve and Rserve-Simpler – TCP/IP based 
connection to R. 

• Delayed Jobs – Asynchronous queuing 
system.  Allows multiple analyses to be 
queued. 

• Child Process – Execute and manage child 
tasks. 

• D3 – Open source visualization framework. 

SIMULATION EXECUTIVE 
The Simulation Executive is responsible for bridging 
the gap between the algorithms being applied to the 
energy models—such as optimization, calibration, and 
sampling—and the web server interface to the client 
computer.  R and Rserve were chosen to fill this role 
because Rserve integrates seamlessly with Ruby 
(memory wise) and is open sourced and highly crowd 
sourced.  R’s modularity and its various libraries and 
packages are also advantageous, because they facilitate 
the making of modules that can be reused by various 
algorithms. 
Several R distributed computing packages were 
leveraged to create a highly parallelizable platform for 
running energy models.  For any building model 
analysis, each energy model is independent from the 
other models being run, creating a large parallel 
problem to solve (1,000-500,000 simulations).  In 
addition, each energy model typically takes at least 
several minutes to run; this processing time creates 
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bottlenecks in large-scale analyses.  To facilitate the 
parallel running of energy models, a socket-based 
cluster is created through the use of the R snow 
package.   
Multi-objective optimization algorithms such as the 
Non-dominated Sorting Genetic Algorithm 2 (NSGA2) 
and the Strength Pareto Evolutionary Algorithm 2 
(SPEA2) as well as other standard single objective 
optimization algorithms, widely available through 
external R packages, have been integrated into the 
server. 
R’s visualization capability and ability to easily 
incorporate those visualizations into the web framework 
were also driving factors in choosing R.  The capability 
to fully visualize the distributed inputs of a parametric 
problem and troubleshoot any defects found before 
submitting a large computational problem can save the 
user time and money.   

DEVELOPMENT AND DEPLOYMENT 
Vagrant (http://www.vagrantup.com) is used to easily 
and consistently create the server and worker instances 
with a quick iterative cycle.  Vagrant is an open-source, 
cross-platform, desktop-based software tool that is used 
to create and configure local development environments 
using virtual machines (VMs).  The advantage of 
Vagrant is its ability to download a base VM and then 
use Chef (and other provisioning systems) to repeatably 
provision the system.  This allows multiple developers 
to have the same VMs running, thereby making 
development consistent.  If a developer requires a new 
system dependency (for instance, ImageMagick or 
MySQL), they can simply add the cookbook or create a 
new cookbook to install the dependency.  The other 
developers can then reprovision their local VMs to 
install the dependency.  Also, the ability to destroy and 
recreate a system to a pristine state allows developers to 
test new libraries without worrying about breaking their 
native systems. 
Figure 3 shows the development workflow using Chef 
and Vagrant (Phalip 2012) with customized AWS 
integration.  Vagrant enables developers to work locally 
using their Integrated Development Environment of 
choice.  The changes are instantaneous on the VMs, 
because the source code is mounted directly on the 
VMs and most of the code is not compiled.  Also, if a 
developer needs to debug the server or worker machine, 
they are able to log into the VM and update the required 
code or peruse logs.  Once the developer has a stable 
version ready for release, the same development scripts 
are used to provision the production instances on AWS.  
A custom Ruby script uses the AWS RUBY API gem 
(Amazon 2014) to convert the running AWS instances 
into Amazon Machine Images (AMIs) (Amazon 2014).  

Jenkins (http://jenkins-ci.org) is a continuous 
integration tool that is used to manage the automated 
development of the AMIs. 

 
Figure 3.  Steps of the Development Workflow 

EXAMPLE ANALYSIS WORKFLOW 
This section describes the workflow of an example 
analysis, including the APIs and the data flow.  First, 
the analysis cluster is started via OpenStudio’s PAT 
application or by a custom Ruby gem 
(http://rubygems.org/gems/openstudio-aws).  Currently, 
the size of the cluster is defined before the analysis is 
launched.  The ability to add more worker nodes to the 
cluster is available via a custom R library; however, the 
functionality has not yet been enabled.  In general, the 
design of OpenStudio server is structured around the 
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exchange of data files in JSON format.  The API 
methods and data formats are described in more detail 
below. 

Input Data 
An example analysis was defined using the OpenStudio 
Analysis Spreadsheet project (NREL 2014b).  A custom 
Ruby gem is used to translate the spreadsheet 
configuration to an analysis.json format, which the 
server understands.   
The building in this example was a large office building 
with 21 input variables ranging from infiltration to plug 
loads to system efficiencies to envelope performance.  
The outputs of interest were heating energy and cooling 
energy.  The inputs ranges and distributions for each 
input variable were entered into the spreadsheet and 
submitted to the OpenStudio Server.  The server 
converts the input ranges of each variable into samples 
based on the parameters and the server plots the 
samples as a histogram via R (see Figure 4).  These 
sample values are used in various algorithms if needed. 

 
Figure 4.  Example Input Distribution 

 

Analysis Workflow 
The configuration of the analysis workflow consists of 
two parts:  the payload and the workflow description.  
As described earlier, the payload is an uploaded zip file 
containing the seed model, weather files, and measures.  
The workflow description is in the parameters and body 
of the API POST and contains all the data needed to 
execute the workflow on the model.   
The workflow is an ordered list of measures to apply to 
the seed model.  The measures include descriptions on 
which of the measure arguments are static and which 
are input variables (see Figure 5).  The input variables 
are handed over to the Simulation Executive to control.  
In the case of a sampling problem, the Simulation 
Executive uses the chosen algorithm along with each 

variable’s distribution to determine which value to set 
when running the workflow.   

 
Figure 5.  Example Workflow JSON 

Problem Formulation 
An example of a simple multi-variate multi-objective 
optimization using R’s NSGA2 algorithm (Deb 2002) 
was run with the described example building.  Figure 6 
shows the problem formulation JSON file.  This JSON 
file allows for algorithm arguments to be defaulted and 
overridden as needed.  For example, if the user decides 
to change the number of generations, they simply 
update the value in the JSON and submit it to the 
OpenStudio Server API; conversely, if the user does not 
specify the number of generations (i.e., removes the 
line), it is defaulted to the value given by the author of 
the algorithm. 

"workflow":	
  	
  [	
  
{	
  
	
  "arguments":	
  	
  [	
  …	
  ]	
  
	
  "bcl_measure_directory":	
  	
  
"./measures/reduce_lighting_loads_by_percentage",	
  
	
  "measure_definition_class_name":	
  	
  "ReduceLightingLoadsByPercentage",	
  
	
  "bcl_measure_uuid":	
  	
  "3ec7d1f0-­‐7016-­‐0131-­‐6caa-­‐00ffc0914e0d",	
  
	
  "bcl_measure_version_uuid":	
  	
  "3ec8bc50-­‐7016-­‐0131-­‐6cae-­‐00ffc0914e0d",	
  
	
  "measure_type":	
  	
  "RubyMeasure",	
  
	
  "name":	
  	
  "reduce_lighting_loads_by_percentage",	
  
	
  "display_name":	
  	
  "Reduce	
  Lighting	
  Loads	
  by	
  Percentage",	
  
	
  "variables":	
  	
  [	
  
	
  {	
  
	
  "argument":	
  	
  {	
  
	
  "display_name":	
  	
  "Lighting	
  Power	
  Reduction",	
  
	
  "machine_name":	
  	
  "lighting_power_reduction",	
  
	
  "name":	
  	
  "lighting_power_reduction_percent",	
  
	
  },	
  
	
  "display_name":	
  	
  "Lighting	
  Power	
  Reduction",	
  
	
  "machine_name":	
  	
  "lighting_power_reduction",	
  
	
  "name":	
  	
  "lighting_power_reduction",	
  
	
  "minimum":	
  	
  0.0,	
  
	
  "maximum":	
  	
  50.0,	
  
	
  "units":	
  	
  "",	
  
	
  "variable":	
  	
  true,	
  
	
  "variable_ADDME":	
  	
  true,	
  
	
  "relation_to_output":	
  	
  "",	
  
	
  "uncertainty_description":	
  	
  {	
  
	
  "attributes":	
  	
  [	
  
	
  {	
  
	
  "name":	
  	
  "modes",	
  
	
  "value":	
  	
  40.0	
  
	
  },	
  
	
  {	
  
	
  "name":	
  	
  "lower_bounds",	
  
	
  "value":	
  	
  0.0	
  
	
  },	
  
	
  {	
  
	
  "name":	
  	
  "upper_bounds",	
  
	
  "value":	
  	
  50.0	
  
	
  },	
  
	
  {	
  
	
  "name":	
  	
  "stddev",	
  
	
  "value":	
  	
  8.333333333333334	
  
	
  }	
  
	
  ],	
  
	
  "type":	
  	
  "triangle_uncertain"	
  
	
  },	
  
	
  }	
  
	
  ],	
  
	
  "workflow_index":	
  	
  0,	
  
	
  	
  
},	
  
{	
  
...	
  
	
  "measure_definition_class_name":	
  	
  "ReduceSpaceInfiltrationByPercentage",	
  	
  
...	
  
	
  "measure_definition_class_name":	
  	
  "RotateBuilding",	
  
...	
  
	
  "measure_definition_class_name":	
  	
  "SetWindowToWallRatioByFacade",	
  
...	
  
	
  "measure_definition_class_name":	
  	
  "SetWindowToWallRatioByFacade",	
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Figure 6.  Problem Formulation 

Submission and Analysis 
Once the user has uploaded the payload and POSTed 
the workflow and the problem definition, then the user 
submits an action POST to inform the server to start the 
analysis.  Figure 7 shows an example of the POST 
parameters.  These parameters are used to select which 
analysis (in the case below “optim”), the action to take 
on the analysis (e.g., start, stop), and selecting which 
scripts to run to create the data points/simulations.  
Required parameters are defaulted if no values are 
passed in.   

 
Figure 7.  Analysis Action JSON 

The concept of POSTing analyses allows the server to 
chain analyses together.  As an example, if the user 
wants to sample 100 variables with 10,000 samples and 
run the simulations with the samples, the user breaks up 
the request into two analyses.  The user first submits an 
analysis to sample the parameter space using a specific 
algorithm, such as Latin Hypercube Sampling, then 
submits a second analysis to run all the data points 
generated.  Breaking up the analysis allows the user (or 
the server) to view the results of the first analysis to 
inform the subsequent analysis.  Another common 

staged analysis is to run a subset of the parameter space 
to conduct a sensitivity analysis, then use the results of 
the analysis to determine which variables should be 
included in a calibration or optimization.  The user does 
not have to wait until the first analysis is complete 
before submitting the subsequent analysis; they just 
have to submit them in the order they want them to run.  
In the case of an optimization, the submission is only 
one analysis because the optimization algorithm 
handles the generation of the data points. 

Simulation Results 
Once the user uploads all the required data, the server 
starts the analysis as a background task.  The first step 
of the analysis is to configure the worker nodes by 
copying over the required files.  The second step is to 
handover the process to the Simulation Executive.  
Because the analysis task is run in the background, the 
server is available to view the results on the fly or 
receive more analyses to be queued.  As each data 
point/simulation finishes, the simulation results are 
pushed back to the server.   
Figure 7 shows the output of the large office building 
optimized using the NSGA2 algorithm.  The Pareto 
front is clearly visible.   

 
Figure 8.  Example Results of an Optimization 

The last step of the analysis is a post-process or cleanup 
task.  This task is defined in the algorithm and allows 
for data to be post-processed for various needs.  The 
results of all the simulations are downloadable as either 
comma-separated value files or R data frames. 

NEXT STEPS 
The development and deployment of the OpenStudio 
Server and worker images are currently limited to 
Amazon AWS.  Although the technologies and tools 
chosen for the development have the capability of 
provisioning instances other than Ubuntu and in 
environments other than Amazon, these have yet to be 
explored because of certain Amazon-specific APIs used 

{	
  	
  
	
  skip_init:	
  	
  false,	
  
	
  create_data_point_filename:	
  	
  "create_data_point.rb",	
  
	
  output_variables:	
  	
  [	
  
	
  {	
  
	
  variable_name:	
  	
  ‘cooling_energy’,	
  
	
  objective_function:	
  	
  true,	
  
	
  objective_function_index:	
  	
  1	
  
	
  },	
  
	
  {	
  
	
  variable_name:	
  	
  ‘cooling_energy’,	
  
	
  objective_function:	
  	
  true,	
  
	
  objective_function_index:	
  	
  1	
  
	
  },	
  
	
  ],	
  
	
  problem:	
  	
  {	
  
	
  random_seed:	
  	
  7192837,	
  
	
  algorithm:	
  	
  {	
  
	
  generations:	
  	
  9,	
  
	
  toursize:	
  	
  2,	
  
	
  cprob:	
  	
  0.7,	
  
	
  xoverdistidx:	
  	
  5,	
  
	
  mudistidx:	
  	
  10,	
  
	
  mprob:	
  	
  0.5,	
  
	
  normtype:	
  	
  "minkowski",	
  
	
  ppower:	
  	
  2,	
  
	
  }	
  
	
  }	
  
}	
  
 

{	
  
	
  "analysis_action":"start",	
  
	
  "without_delay":false,	
  
	
  "analysis_type":"optim",	
  
	
  "allow_multiple_jobs":true,	
  
	
  "use_server_as_worker":true,	
  
	
  "simulate_data_point_filename":"simulate_dp.rb",	
  
	
  "run_data_point_filename":"run_openstudio.rb"	
  
}	
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(e.g.,  Amazon’s Security Groups and AMIs) would 
need to be abstracted. 
Adding a new analysis requires the addition of only one 
file in the lib directory of the web application; however, 
it requires rebuilding the AMIs to expose the new 
analysis.  The desire to have a user upload a custom 
analysis script is simple but requires a security check on 
the systems.   
Another next step is to develop the ability to persist the 
results into Amazon’s EBS or S3 data stores.  This will 
allow users the ability to restart the instance again to 
see their results.  In many cases the data created are too 
large to be stored on a local machine and the data 
download latency and costs are prohibitive. 
Finally, users have asked for a local image that can be 
used to run a smaller analysis without having to spin-up 
instances on Amazon.  Vagrant has the ability to 
package .box files that are snapshots of the VirtualBox 
image with associated metadata.  These images could 
be downloaded and installed on a local machine to run 
the analysis.  This workflow is similar to the 
developer’s workflow and requires the user’s machine 
to be large enough to handle at least one virtual 
machine with substantial data storage. 

CONCLUSIONS 
The ability to conduct large-scale BEM simulation 
studies is becoming more common with the user’s 
desire to explore larger parameter spaces with more 
complicated systems during the building design phases.  
OpenStudio, through both PAT and the OpenStudio 
Analysis Spreadsheet, has added the capability for users 
to use AWS to run a large number of simulations.  This 
paper described the complexity and the tools used to 
consistently and repeatably create the instances to 
satisfy the quickly changing landscape of OpenStudio 
development.   
An example analysis showed the API methods that are 
exposed to the user, including examples of the data 
formats used to describe the analysis.  The workflow is 
designed around using OpenStudio’s measures to 
programmatically perturb the models. 
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