

2014 ASHRAE/IBPSA-USA
Building Simulation Conference

Atlanta, GA
September 10-12, 2014

SCALING BUILDING ENERGY MODELING HORIZONTALLY

IN THE CLOUD WITH OPENSTUDIO

Nicholas L. Long1, Brian L. Ball1, Katherine A. Fleming1, and Daniel L. Macumber1
1National Renewable Energy Laboratory, Golden, CO

ABSTRACT
Although building energy modeling has been common
for many years, large-scale analyses have more recently
become achievable for more users with access to
affordable and vast computing power in the cloud.
Recently, the OpenStudio Parametric Analysis Tool
was enhanced, allowing users to launch their own cloud
resources to run a large number of simulations. This
paper discusses the process used to dynamically
provision the machine images used in the cloud
repeatedly and consistently, to launch and configure
instances of these images, and finally to run analyses
using the clustered instances running in the cloud.
Several open source libraries for performing these tasks
were used and extended as needed to support building
energy modeling needs. This paper also describes
various use cases of the OpenStudio Cloud
implementation and outlines future use cases that are
possible once a large clustered environment is
available.

INTRODUCTION
In September 2013, OpenStudio (NREL 2014a)
released a version of its Parametric Analysis Tool
(PAT), which enabled users to run a building energy
modeling (BEM) analysis on the cloud using their own
accounts (Macumber 2014). Two primary challenges
were addressed to enable this new functionality: (1)
designing a system architecture that would scale over a
range of cloud resources; and (2) providing access to
BEM software such as OpenStudio and EnergyPlus
(Crawley et al. 2005) on cloud resources.
The following sections describe the system
architecture—including the reasons for choosing
various technologies, the analysis engine, the
provisioning system, and the development/deployment
methodology. In addition, a simple analysis leveraging
the architecture stack to show the capabilities and
advantages of a distributed analysis framework is
described.

SYSTEM ARCHITECTURE
Early in the design of this project, it was decided that
users of OpenStudio would be required to provision,
run, and manage their own instances of the servers in
the cloud. This allowed users to pay for their own
computation time and required the OpenStudio team to
architect a solution that could be easily (and
continuously) updated and easily deployed. Based on
the various requirements, it was decided to initially
implement the solution with Amazon Web Services
(AWS). The technologies chosen in the architecture
will allow this project to be deployed in other hosting
environments, as described in more detail later.
The system architecture consists of two pieces, the
server and the worker. The server acts as the system
providing communication between the user and the
worker nodes. The server contains a much larger
software stack because of both its role and its physical
system resource requirements. The worker nodes are
designed to take instructions from the server, generate
the data point to run, run the data point, and then return
the results to the server.
The system architecture is composed entirely of open
source software and shown in Figure 1.

Figure 1 System Architecture Diagram

Each server and worker node is an individual Ubuntu
12.04 LTS Server operating system. Both the server
and the worker use several frameworks to meet

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

80

requirements for a variety of applications. These
frameworks include:

• Java 1.7
• Ruby (via rbenv)
• Python

The server node contains additional libraries and
applications that provide specific functionality,
including:

• Ruby on Rails: web application framework.
The “Web Application” section will be
discussed this in more detail in the “Web
Application” section.

• Apache HTTP Server: web server.
• Passenger: Rails web application server.
• R: See “Simulation Executive”.
• MongoDB-Server: Database to store analyses

and results.
The worker nodes contain libraries and applications
specific to running the simulations, including:

• OpenStudio: Measure application and model
articulation.

• EnergyPlus: Whole Building Model
Simulation Engine.

• Radiance: Lighting/Daylighting Simulation
Engine.

• R: connection to “Simulation Executive”.
• MongoDB-Client: connection to MongoDB-

Server.

SYSTEM PROVISIONING
The Chef configuration management tool
(http://opscode.com) was chosen to provision the server
and worker machine images with all their required
software in an easy and idempotent manner. These
properties are important because OpenStudio builds are
released every two weeks, and many more images are
created in the meantime for testing and development.
Chef is an open source, cross-platform, Ruby-based
software package that abstracts out the software
installation process into scripts representing cookbooks
and recipes. Users can use already defined cookbooks
or create their own cookbooks and provide them to the
community. For this project, 45 cookbooks are used to
install all software needed for the server and worker
nodes. These cookbooks can be as simple as installing
the “logrotate” utility, or more complicated such as
installing Apache Web Server and Passenger. Chef
handles dependency tracking and compiles the
cookbooks before execution to ensure that all required
cookbooks—and that the specified cookbook
versions—are available and that all packages are
installed in the correct order. The actual workflow of

Chef is very flexible and commonly used in more
complex system configurations (Opscode 2014).
The 45 cookbooks used for the OpenStudio server and
worker nodes are hosted on Github at
https://github.com/NREL-cookbooks. There are two
competing philosophies on managing Chef cookbooks.
The first is that a developer should never modify a
community-provided cookbook directly; instead, the
cookbook should be wrapped or monkey patched (using
Chef-rewind) to extend its functionality. The second is
to fork the cookbook and extend its functionality
directly, as needed. The latter method was decided as
the workflow, mostly because “newer” community-
provided cookbooks have not been stress tested to
handle various use cases. Moreover, the use case of
running a large number of simulations using custom
software dependencies, as considered in this paper, is
not a common use case for Chef, whose focus has been
on web application and database development.
During the development of this project, several new
cookbooks were developed before the Chef community
had provided them. EnergyPlus
(https://github.com/NREL-cookbooks/energyplus) and
OpenStudio (https://github.com/NREL-cookbooks/
openstudio) cookbooks were created to handle the
installation of EnergyPlus and OpenStudio on Ubuntu,
Red Hat Enterprise Linux, and CentOS based systems.
Community cookbooks, when available, were chosen
over those developed in-house, and extended according
to the philosophy described above, as needed.
Cookbooks are typically designed to be compatible
with multiple flavors of Linux and, less commonly,
with Windows and Mac OSX. To install software via
scripts, all software must be accessible and
passwordless. For this reason, EnergyPlus Linux build
passwords were removed. OpenStudio builds and
EnergyPlus builds were placed on web servers that
allow downloading via wget/curl.

WEB APPLICATION
The web application uses the Ruby on Rails framework
with a Representational State Transfer (REST)
Application Programming Interface (API). The
objective of the web application is to manage analyses,
which entails queuing analyses (not simulations),
ensuring worker nodes have the data needed to run an
analysis, downloading results, and holding the
Simulation Executive process.
The website allows users to quickly see the state of the
simulations, view basic results, and download data of
interest for client-based evaluation. The web
application has simple high-level navigation to traverse
projects, analyses, measures, variables, and data points

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

81

(i.e., simulations). The web application also contains
basic visualizations, implemented using D3
(http://d3js.org/), allowing users to navigate the
parameter space.
The web server receives instructions via the RESTful
API in JavaScript Object Notation (JSON). Some of
the more important API resources and their
functionality are the following:

• POST /project.json – high-level project data
including name and description.

• POST /{pid}/analysis.json – analysis input
arguments and workflow of analysis to be run.

• POST /{aid}/upload.json – upload of zip file
containing seed model, weather files, and
measures. All content in zip file is sent to
worker node.

• POST /{aid}/data_point.json – a specific data
point to be run, with variables set to specific
values.

• POST /{aid}/data_points/batch_upload.json –
list of specific data points to be run.

• POST /{aid}/action.json – message sent to the
analysis to do an action (e.g., start, stop).

• GET /analysis/{aid}/status.json – list of all
data points and the run status.

• GET /data_point/{did}/download – download
the data point ZIP file with all results from
simulation.

Figure 2 Data Flow for OpenStudio Server

The expected JSON formats will be outlined later in the
paper. Figure 2 shows the flow of data for the
OpenStudio Server. The analysis JSON file can be

generated from either OpenStudio’s PAT or from a
custom spreadsheet (and required Ruby gem). Once the
server receives the JSON file and uploaded zip file, it
awaits instruction to start via a simple JSON POST to
the action endpoint. The received action will start the
analysis which consists of first sending the uploaded zip
file to the worker nodes, then handing off instruction
and algorithm information to the Simulation Executive
(R).
Another important characteristic of the web application
is its ability to start child processes for each analysis,
referred to as watchers. These watchers will
asynchronously download results from worker nodes to
the server node, allowing users to download the
detailed results for each data point simulation from the
API or the website. The watchers also have the ability
to pull out specific data needed for visualization (e.g.,
objective function values).
The Ruby on Rails application uses several Ruby gems
(http://rubygems.org/) to provide specific functionality.
The following list contains the more important gems
and their functionality

• Mongoid – Object Document Map for Rails
Models and MongoDB.

• Rserve and Rserve-Simpler – TCP/IP based
connection to R.

• Delayed Jobs – Asynchronous queuing
system. Allows multiple analyses to be
queued.

• Child Process – Execute and manage child
tasks.

• D3 – Open source visualization framework.

SIMULATION EXECUTIVE
The Simulation Executive is responsible for bridging
the gap between the algorithms being applied to the
energy models—such as optimization, calibration, and
sampling—and the web server interface to the client
computer. R and Rserve were chosen to fill this role
because Rserve integrates seamlessly with Ruby
(memory wise) and is open sourced and highly crowd
sourced. R’s modularity and its various libraries and
packages are also advantageous, because they facilitate
the making of modules that can be reused by various
algorithms.
Several R distributed computing packages were
leveraged to create a highly parallelizable platform for
running energy models. For any building model
analysis, each energy model is independent from the
other models being run, creating a large parallel
problem to solve (1,000-500,000 simulations). In
addition, each energy model typically takes at least
several minutes to run; this processing time creates

OpenStudio, PAT

LOCAL SYSTEM
Analysis

Spreadsheet

SERVER

WORKER NODES

OpenStudio Core Analysis Gem

Web
Application

Simulation
Executive (R)

Run Data Point

File System

Variable
ValuesSeed &

Measures

Get
Workflow

Instructions

Post
Results

Run Analysis

Po
st

Results

Get

Algorithm
Results

JSON Data

Run OpenStudio
Apply Measures

Run EnergyPlus

Post Process
Results

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

82

bottlenecks in large-scale analyses. To facilitate the
parallel running of energy models, a socket-based
cluster is created through the use of the R snow
package.
Multi-objective optimization algorithms such as the
Non-dominated Sorting Genetic Algorithm 2 (NSGA2)
and the Strength Pareto Evolutionary Algorithm 2
(SPEA2) as well as other standard single objective
optimization algorithms, widely available through
external R packages, have been integrated into the
server.
R’s visualization capability and ability to easily
incorporate those visualizations into the web framework
were also driving factors in choosing R. The capability
to fully visualize the distributed inputs of a parametric
problem and troubleshoot any defects found before
submitting a large computational problem can save the
user time and money.

DEVELOPMENT AND DEPLOYMENT
Vagrant (http://www.vagrantup.com) is used to easily
and consistently create the server and worker instances
with a quick iterative cycle. Vagrant is an open-source,
cross-platform, desktop-based software tool that is used
to create and configure local development environments
using virtual machines (VMs). The advantage of
Vagrant is its ability to download a base VM and then
use Chef (and other provisioning systems) to repeatably
provision the system. This allows multiple developers
to have the same VMs running, thereby making
development consistent. If a developer requires a new
system dependency (for instance, ImageMagick or
MySQL), they can simply add the cookbook or create a
new cookbook to install the dependency. The other
developers can then reprovision their local VMs to
install the dependency. Also, the ability to destroy and
recreate a system to a pristine state allows developers to
test new libraries without worrying about breaking their
native systems.
Figure 3 shows the development workflow using Chef
and Vagrant (Phalip 2012) with customized AWS
integration. Vagrant enables developers to work locally
using their Integrated Development Environment of
choice. The changes are instantaneous on the VMs,
because the source code is mounted directly on the
VMs and most of the code is not compiled. Also, if a
developer needs to debug the server or worker machine,
they are able to log into the VM and update the required
code or peruse logs. Once the developer has a stable
version ready for release, the same development scripts
are used to provision the production instances on AWS.
A custom Ruby script uses the AWS RUBY API gem
(Amazon 2014) to convert the running AWS instances
into Amazon Machine Images (AMIs) (Amazon 2014).

Jenkins (http://jenkins-ci.org) is a continuous
integration tool that is used to manage the automated
development of the AMIs.

Figure 3. Steps of the Development Workflow

EXAMPLE ANALYSIS WORKFLOW
This section describes the workflow of an example
analysis, including the APIs and the data flow. First,
the analysis cluster is started via OpenStudio’s PAT
application or by a custom Ruby gem
(http://rubygems.org/gems/openstudio-aws). Currently,
the size of the cluster is defined before the analysis is
launched. The ability to add more worker nodes to the
cluster is available via a custom R library; however, the
functionality has not yet been enabled. In general, the
design of OpenStudio server is structured around the

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

83

exchange of data files in JSON format. The API
methods and data formats are described in more detail
below.

Input Data
An example analysis was defined using the OpenStudio
Analysis Spreadsheet project (NREL 2014b). A custom
Ruby gem is used to translate the spreadsheet
configuration to an analysis.json format, which the
server understands.
The building in this example was a large office building
with 21 input variables ranging from infiltration to plug
loads to system efficiencies to envelope performance.
The outputs of interest were heating energy and cooling
energy. The inputs ranges and distributions for each
input variable were entered into the spreadsheet and
submitted to the OpenStudio Server. The server
converts the input ranges of each variable into samples
based on the parameters and the server plots the
samples as a histogram via R (see Figure 4). These
sample values are used in various algorithms if needed.

Figure 4. Example Input Distribution

Analysis Workflow
The configuration of the analysis workflow consists of
two parts: the payload and the workflow description.
As described earlier, the payload is an uploaded zip file
containing the seed model, weather files, and measures.
The workflow description is in the parameters and body
of the API POST and contains all the data needed to
execute the workflow on the model.
The workflow is an ordered list of measures to apply to
the seed model. The measures include descriptions on
which of the measure arguments are static and which
are input variables (see Figure 5). The input variables
are handed over to the Simulation Executive to control.
In the case of a sampling problem, the Simulation
Executive uses the chosen algorithm along with each

variable’s distribution to determine which value to set
when running the workflow.

Figure 5. Example Workflow JSON

Problem Formulation
An example of a simple multi-variate multi-objective
optimization using R’s NSGA2 algorithm (Deb 2002)
was run with the described example building. Figure 6
shows the problem formulation JSON file. This JSON
file allows for algorithm arguments to be defaulted and
overridden as needed. For example, if the user decides
to change the number of generations, they simply
update the value in the JSON and submit it to the
OpenStudio Server API; conversely, if the user does not
specify the number of generations (i.e., removes the
line), it is defaulted to the value given by the author of
the algorithm.

"workflow":	
 	
 [

{	

	
 "arguments":	
 	
 [
 …	
]	

	
 "bcl_measure_directory":	
 	

"./measures/reduce_lighting_loads_by_percentage",	

	
 "measure_definition_class_name":	
 	
 "ReduceLightingLoadsByPercentage",	

	
 "bcl_measure_uuid":	
 	
 "3ec7d1f0-­‐7016-­‐0131-­‐6caa-­‐00ffc0914e0d",	

	
 "bcl_measure_version_uuid":	
 	
 "3ec8bc50-­‐7016-­‐0131-­‐6cae-­‐00ffc0914e0d",	

	
 "measure_type":	
 	
 "RubyMeasure",	

	
 "name":	
 	
 "reduce_lighting_loads_by_percentage",	

	
 "display_name":	
 	
 "Reduce	
 Lighting	
 Loads	
 by	
 Percentage",	

	
 "variables":	
 	
 [

	
 {	

	
 "argument":	
 	
 {	

	
 "display_name":	
 	
 "Lighting	
 Power	
 Reduction",	

	
 "machine_name":	
 	
 "lighting_power_reduction",	

	
 "name":	
 	
 "lighting_power_reduction_percent",	

	
 },	

	
 "display_name":	
 	
 "Lighting	
 Power	
 Reduction",	

	
 "machine_name":	
 	
 "lighting_power_reduction",	

	
 "name":	
 	
 "lighting_power_reduction",	

	
 "minimum":	
 	
 0.0,	

	
 "maximum":	
 	
 50.0,	

	
 "units":	
 	
 "",	

	
 "variable":	
 	
 true,	

	
 "variable_ADDME":	
 	
 true,	

	
 "relation_to_output":	
 	
 "",	

	
 "uncertainty_description":	
 	
 {	

	
 "attributes":	
 	
 [

	
 {	

	
 "name":	
 	
 "modes",	

	
 "value":	
 	
 40.0	

	
 },	

	
 {	

	
 "name":	
 	
 "lower_bounds",	

	
 "value":	
 	
 0.0	

	
 },	

	
 {	

	
 "name":	
 	
 "upper_bounds",	

	
 "value":	
 	
 50.0	

	
 },	

	
 {	

	
 "name":	
 	
 "stddev",	

	
 "value":	
 	
 8.333333333333334	

	
 }	

	
],	

	
 "type":	
 	
 "triangle_uncertain"	

	
 },	

	
 }	

	
],	

	
 "workflow_index":	
 	
 0,	

	
 	

},	

{	

...	

	
 "measure_definition_class_name":	
 	
 "ReduceSpaceInfiltrationByPercentage",	
 	

...	

	
 "measure_definition_class_name":	
 	
 "RotateBuilding",	

...	

	
 "measure_definition_class_name":	
 	
 "SetWindowToWallRatioByFacade",	

...	

	
 "measure_definition_class_name":	
 	
 "SetWindowToWallRatioByFacade",	

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

84

Figure 6. Problem Formulation

Submission and Analysis
Once the user has uploaded the payload and POSTed
the workflow and the problem definition, then the user
submits an action POST to inform the server to start the
analysis. Figure 7 shows an example of the POST
parameters. These parameters are used to select which
analysis (in the case below “optim”), the action to take
on the analysis (e.g., start, stop), and selecting which
scripts to run to create the data points/simulations.
Required parameters are defaulted if no values are
passed in.

Figure 7. Analysis Action JSON

The concept of POSTing analyses allows the server to
chain analyses together. As an example, if the user
wants to sample 100 variables with 10,000 samples and
run the simulations with the samples, the user breaks up
the request into two analyses. The user first submits an
analysis to sample the parameter space using a specific
algorithm, such as Latin Hypercube Sampling, then
submits a second analysis to run all the data points
generated. Breaking up the analysis allows the user (or
the server) to view the results of the first analysis to
inform the subsequent analysis. Another common

staged analysis is to run a subset of the parameter space
to conduct a sensitivity analysis, then use the results of
the analysis to determine which variables should be
included in a calibration or optimization. The user does
not have to wait until the first analysis is complete
before submitting the subsequent analysis; they just
have to submit them in the order they want them to run.
In the case of an optimization, the submission is only
one analysis because the optimization algorithm
handles the generation of the data points.

Simulation Results
Once the user uploads all the required data, the server
starts the analysis as a background task. The first step
of the analysis is to configure the worker nodes by
copying over the required files. The second step is to
handover the process to the Simulation Executive.
Because the analysis task is run in the background, the
server is available to view the results on the fly or
receive more analyses to be queued. As each data
point/simulation finishes, the simulation results are
pushed back to the server.
Figure 7 shows the output of the large office building
optimized using the NSGA2 algorithm. The Pareto
front is clearly visible.

Figure 8. Example Results of an Optimization

The last step of the analysis is a post-process or cleanup
task. This task is defined in the algorithm and allows
for data to be post-processed for various needs. The
results of all the simulations are downloadable as either
comma-separated value files or R data frames.

NEXT STEPS
The development and deployment of the OpenStudio
Server and worker images are currently limited to
Amazon AWS. Although the technologies and tools
chosen for the development have the capability of
provisioning instances other than Ubuntu and in
environments other than Amazon, these have yet to be
explored because of certain Amazon-specific APIs used

{	
 	

	
 skip_init:	
 	
 false,	

	
 create_data_point_filename:	
 	
 "create_data_point.rb",	

	
 output_variables:	
 	
 [

	
 {	

	
 variable_name:	
 	
 ‘cooling_energy’,	

	
 objective_function:	
 	
 true,	

	
 objective_function_index:	
 	
 1	

	
 },	

	
 {	

	
 variable_name:	
 	
 ‘cooling_energy’,	

	
 objective_function:	
 	
 true,	

	
 objective_function_index:	
 	
 1	

	
 },	

	
],	

	
 problem:	
 	
 {	

	
 random_seed:	
 	
 7192837,	

	
 algorithm:	
 	
 {	

	
 generations:	
 	
 9,	

	
 toursize:	
 	
 2,	

	
 cprob:	
 	
 0.7,	

	
 xoverdistidx:	
 	
 5,	

	
 mudistidx:	
 	
 10,	

	
 mprob:	
 	
 0.5,	

	
 normtype:	
 	
 "minkowski",	

	
 ppower:	
 	
 2,	

	
 }	

	
 }	

}	

{	

	
 "analysis_action":"start",	

	
 "without_delay":false,	

	
 "analysis_type":"optim",	

	
 "allow_multiple_jobs":true,	

	
 "use_server_as_worker":true,	

	
 "simulate_data_point_filename":"simulate_dp.rb",	

	
 "run_data_point_filename":"run_openstudio.rb"	

}	

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

85

(e.g., Amazon’s Security Groups and AMIs) would
need to be abstracted.
Adding a new analysis requires the addition of only one
file in the lib directory of the web application; however,
it requires rebuilding the AMIs to expose the new
analysis. The desire to have a user upload a custom
analysis script is simple but requires a security check on
the systems.
Another next step is to develop the ability to persist the
results into Amazon’s EBS or S3 data stores. This will
allow users the ability to restart the instance again to
see their results. In many cases the data created are too
large to be stored on a local machine and the data
download latency and costs are prohibitive.
Finally, users have asked for a local image that can be
used to run a smaller analysis without having to spin-up
instances on Amazon. Vagrant has the ability to
package .box files that are snapshots of the VirtualBox
image with associated metadata. These images could
be downloaded and installed on a local machine to run
the analysis. This workflow is similar to the
developer’s workflow and requires the user’s machine
to be large enough to handle at least one virtual
machine with substantial data storage.

CONCLUSIONS
The ability to conduct large-scale BEM simulation
studies is becoming more common with the user’s
desire to explore larger parameter spaces with more
complicated systems during the building design phases.
OpenStudio, through both PAT and the OpenStudio
Analysis Spreadsheet, has added the capability for users
to use AWS to run a large number of simulations. This
paper described the complexity and the tools used to
consistently and repeatably create the instances to
satisfy the quickly changing landscape of OpenStudio
development.
An example analysis showed the API methods that are
exposed to the user, including examples of the data
formats used to describe the analysis. The workflow is
designed around using OpenStudio’s measures to
programmatically perturb the models.

ACKNOWLEDGMENT
The authors appreciate continued support from the U.S.
Department of Energy’s Buildings Technology Office,
which has produced the underlying OpenStudio
platform.

REFERENCES
Amazon. 2014. AWS SDK Core Ruby Gem.

https://github.com/aws/aws-sdk-core-ruby. Last
Accessed: March 10, 2014.

Amazon. 2014b. Amazon Machine Images (AMI).
http://docs.aws.amazon.com/AWSEC2/latest/User
Guide/AMIs.html. Last Accessed: March 13,
2014.

Crawley, D. B., Hand, J. W., Kummert, M., & Griffith,
B. T. (2005). Contrasting the Capabilities of
Building Energy Performance. Building
Simulation (pp. 231-238). Montreal.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T.
(2002). A Fast and Elitist Multiobjective Genetic
Algorithm: NSGA-II. IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION (pp. 182-
197). IEEE.

Macumber, D., Ball, B., Long, N. 2014. A Graphical
Tool for Cloud Based Building Energy Simulation.
Submitted EMC Simbuild 2014.

NREL. 2014a. OpenStudio Analysis Spreadsheet:
Source Code. National Renewable Energy
Laboratory.
https://github.com/NREL/OpenStudio-analysis-
spreadsheet. Last Accessed: March 13, 2014.

NREL. 2014b. OpenStudio. National Renewable
Energy Laboratory. http://openstudio.nrel.gov/.
Last accessed: March 5, 2014.

Opscode. 2014. Chef Documents: About the Chef-
Client Run. http://docs.opscode.com/essentials_
nodes_chef_run.html

Phalip, J. 2012. Chef: Boosting Teamwork with
Vagrant. http://www.digitalforreallife.com/tag/
chef. Last accessed: March 5, 2014.

© 2014 ASHRAE (www.ashrae.org). For personal use only. Reproduction, distribution, or transmission
in either print or digital form is not permitted without ASHRAE’s prior written permission.

86

